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Discontinuous solutions of Euler equations in the plane
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Abstract:
We prove that a stationary solution of vortex sheet equations is a circle if and only if a
vortex sheet is a smooth simple closed curve, and investigate the stability of this
stationary solution. In addition, we prove finite time analyticity of the nonlinear
nonstationary problem of a vortex sheet which is close to a circle.
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Introduction
We consider the Euler equations for an incompressible ideal fluid for ze (0,%0) in the
plane
(1 g—zl+(u-V)u:—Vp
(2 divu=0

where u = (u,(x,¢),u,(x,¢)) is the fluid velocity and p= p(x,t) is the scalar pressure.
We are concerned with the motion of vortex sheets of the Euler equations, i.e., an
irrotational flow is discontinuous across a curve, i.e., vortex sheet

Sy _omy

()= {x(ﬂ,t)e R’ |Ae R}; hence, the vorticity V>u= is concentrated on it.

ox; ox,
Then the vorticity density Q= Q(l,t) is defined by

v JJoo )94 p(x)ax= [ (.07 ({2 0)az

for any fe C5°(R2),Where Vif= Bi’_i .
ox,  0x

The system that governs the evolution of a vortex sheet and a vorticity density on it
is derived from the Euler equations (1), (2) with the definition of the vorticity (3),
established in [5]:
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where
ox
7 Q=lu| —,
@ [u] P
[u] is the velocity jump across T(t) and ¥ =(V,(4,2),7,(4,¢)) is the mean of the two

velocities on both side of F(t) ,and xT = (x2 ,—xl) .

A simple illustration is given by
Q,/2,0 X, <0
(8) u= ( 0/ ) 2
(-Q0/2,0) x,>0
where Q, is a constant vorticity density on the x, -axis. This flow is linearly unstable,

known as the Kelvin-Helmholtz instability, because the amplitude of the k-Fourier mode
of an initial disturbance of curves or vorticity densities has an exponential growth in

time at the rate |kQO| . C. Sulem, P.L.. Sulem, C. Bardos and U Frisch [5] prove the

existence theorem for the initial data with finite time persistence of analyticity through
an abstract Cauchy-Kowalewski theorem. J. Duchon and R. Robert [2] show one special
analytic choice of the initial circulation distribution for which there is a global piecewise-
analytic solution. The work of the above authors is made on the assumption that a vortex
sheet is close to a straight line.

1. Stationary problem
This section is devoted to the consideration of the stationary problem induced from

(5), (6):

ox + _
)] V-(ﬁj =0
(10) i{[[] ax/ o ](V.a—"j}zo
A A/ |04 oA
and (4).

1.1 Stationary solution
We assume that a vortex sheet is a smooth simple closed curve. Then we have
Lemma 1. Let u; and u, be the velocities inside and outside the vortex sheet T ,
respectively. Then,

(11 u;

i

=0 intheinsideof T,
and

(12) u, n=0, wu,-t=0 on T,
where n is an outward normal vector and T is a unit tangential vector on T .
Proof. By adding (4) and (9) we have

ax )t ax Y
13) u;|—| =0, u,-|=—| =0 on T.
oA oA

Hence we easily see that u; vanishes since u; is both solenoidal and irrotational.

Substituting this into (10), we get the second equation of (12).
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Using the above lemma, we shall rewrite the stationary problem. We note that there
is a harmonic function ¢ such that V'¢=u, since u, is solenoidal and irrotational.

Then it is easy to see u, n :g—(f and u,-7 :%—f on T . Hence, by virtue of (12), the
stationary problem is reduced to finding both a smooth simple closed curve T and a
harmonic function ¢ outside I' satisfying the boundary conditions:

(14) g—f =¢ and @=const. on T ,

where ¢, #0 is the arbitrarily given constant Gif ¢, =0, then Q=0).

First we easily see that the stationary problem has the following solution; if T' is a
circle about x, with the length of the circumference L,then ¢ isrepresented in the

form

(15) p(x)="log

With respect to this stationary problem, harmonic functions must satisfy over-
determined boundary conditions. It hence seems to be a natural question whether or not
there exists another solution although T is unknown. This uniqueness problem has an
affirmative answer.

More precisely, we state

Theorem 1. Let T be a simple closed curve of class C™*° for some 0<@<1.Let D be

the outside domain of T and let L denote the length of the perimeter of T .
Suppose that there exists a harmonic function ¢ in D satisfying the boundary condition (14)

and
(16) V@ remains bounded in D .
Then T isacircleand ¢ has the specific form (15).

Remark. 1) Condition (16) seems to be a physically reasonable assumption; this
means that the velocity of the flow remains bounded at infinity. 2) Itis easy to see
that the vorticity density is given by Q=¢,L/27 .

The following lemma is needed to prove the above theorem.
Lemma 2. Let Tand T, be simple closed curves of class C', where Tis inside T,.

Let D, be a domain bounded by an outer contour T, and an inner contour T .

Assume that ¢ is a harmonic function in D, with @€ C(Bl) satisfying the following

properties,
) L
a7 a—f has a definite sign on T, ,
(18) Vo can be extended by continuity to T, .

Then, for any critical point xye D, of ¢, ie, V(x,)=0, the following inequalities hold.
19) min{p(§)| £ € T}< plxg) < max{p(¢) e T}

This lemma may be known, but for the convenience of the reader, we shall give the
proof at the end of this subsection.
Corollary.  On the assumption of lemma 2, if g = const., then Vo #0 in D,.
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Proof of theorem1.
We first show that ¢ is represented in the form:

1
(20) x)= 4 lo ds z+const.
¢() ZIZ'J.T glx_(fl &
Let R be a positive number such that R > maxﬂfl |Ee 1"}. We denote by T, a

circumference about the origin with radius R and by B; a domain bounded by T} .

We apply Green’s formula to B nD for ¢-g¢p and log Using (14) and

b 5|'
the identity: %JFR Bzf |x §| dsg=-1, we obtain
1
= B A
=0, (x)+0,(x) forany xe ByND.

We know that ¢, (single layer potential and double layer potential) is a harmonic

functionin B, andthat ¢ and ¢, are harmonicin D . In addition, the identity

@, =p—¢, holdsin Bp ND . Hence there is a harmonic extension @, in Bz UD=R?

such that ¢, =¢-¢, in D.

Since Vo, (x (lxl ) as |x| — o and (16), ?}ﬁ (=1, 2) is a bounded harmonic
X
J

L - el . .
function in on R?. This yields that a_(/’z (=1, 2) is identically constant, and hence we see
X
J
that @,(x)=b-x+const., where b is an arbitrary constant vector. From the property of
the single layer potential, the equation: aaﬂ =¢, holds. This, together with (14), yields
n r
90,
on |
We next show that ¢ satisfies the identity

=b-nr =0, and therefore 5=0.Hence we obtain (20).

(22) |V¢J(xl = |01|exp(— cz——(o(x)] forany xe D .
17
where ¢, =@r (E const,) and 7y =L/2x . To this end we begin with proving
(23) Vgo(x) %0 forany xe D .
Differentiating (20) we have
-¢

\% d

(24) olx)= Z”Irl e
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From this, for any xe D\ B,

c 1
ﬁ.de Zg(R—ngeaerOJ‘r'x_ﬂz dsgz >0

This shows V¢(x) #0 in D\By, and in particular, %9 = ﬁ»VqJ(x)”X‘:R #0.
n, |x
Furthermore, since @ =const holds, applying Corollary of lemma 2to @ in Dn By
we have V(o(x) #0 in D n B, . Hence we obtain (23).
Since ¢ is a harmonic function with (23), it is easy to see

(25) loglV(p(x] is a harmonic function in D .

In addition, since the boundary condition (14) yields Vg = g—wn =cn on I, 10g|V(p(x)
n

satisfies
(26) logquJ(x):loglc,l on T'.

o |sme x| KM
From (24) and identity: T Xl
h-® 7| Pk

we see

V(/)(x) =—cn ﬁ+ O(lxliz) as |x| — oo,
X|

This implies
@27 )}iinm[logIV(p(x] - logﬁ] = log|c1 |r0 .

On the other hand, it follows from (20) that

(28) lim ((p(x) —qr, logi] =const. .
i e
Consequently, setting w(x)=p(x)-c,r 10g|V(p(x] and combining the above results
(25)~(28) with the assumption for @ we see that ¥ is a harmonic functionin D
satisfying w(x)=c, —c;ry 10g|cl| on I' and ¥ remains bounded at infinity. Hence from
the uniqueness theorem for exterior Dirichlet problem we obtain ¥(x)=c, — ¢, loglcll

in D, thus showing (22).

2(e; -~ plx)

Let ‘{’(x) = exp———. Then differentiating ‘-I’(x) and using (22) we have
A’
(29) |V‘I”((x]2 = iZc:xpM = iZ‘P(x)
Ty ¢’y To

Differentiating (29) in x 7 (j=12) yields

2
(30) vxp(x).vi{w(x)_%}:o
axj o
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Since it follows straightforward computation that ‘P(x)—lxiz / r02 is harmonic in D and
(22), we also have
2
b
(31) V\I/(x)L Vi \Il(x)_u =0
ox; 72

J 0
Hence noting from (29) that V¥(x)#0 for any xe D we have
0 Gl
V—:W(x)-51=0 (j=12) in D.
ox; o

J

2 . . . . .
We thus see that ‘I’(x)—M / r02 is a linear function, and moreover since ‘{’(x) satisfies

(29), we obtain

2
(32) ‘I’(x)—%:%(— 2x, -x+|x0|2) ,
o o
where x, is an arbitrary point in R?. Hence we have
2e, —9lx)) _ W(x)=

¢’

1 2
eXp _2|x_x0|
p

0
. 2 o ..
Noting @r =c¢, we see that |x—x0| = r02 for any xe I'. Substituting this into (20)

we obtain (15).
Remark. The above proof is inspired by [4] and [6].

Proof of lemma 2.

We shall show that (19) holds for the case 8_(p >0.
n

We begin with investigating the behavior of trajectories satisfying the gradient
system:

dx

As is known the theory of ordinary differential equations, noncontinuable solutions of
(33) have the following properties
a) Trajectories cannot intersect each other at any regular point of @ .

b)  Both endpoints of a trajectory are certainly located on the boundary of D,
or at some critical point of @ in D,.
c) ¢(x(t)) is a strictly monotone increasing function in t .
We denote by S the set of all critical points of ¢ in D,.Then S is a finite set

since it follows from A@=0 that the critical points are isolated. To study the behavior
of trajectories in the neighborhood of a critical point we expand the right-hand side of
(33) into Taylor series at each point a€ S . Using A¢p=0 and introducing polar

coordinates (r = |x— a|,9) we can rewrite (33) in the neighborhood of a as follows.

There exists n>2 for each ae€ S such that
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(34) % =cr"™ cos(nf- 6, )+ O(V ’ )
% — 2 sin(n<9 -6, ) + O(r"—l )

where the constants ¢ (c # 0) and 6, depend only on the values of n -th derivatives of
@ and a.

The above equations read that behavior of trajectories in the neighborhood of a
degenerate critical point, i.e., the case n >3, is similar to that in the neighborhood of a
saddle point corresponding to the case n =2 ; more precisely,

(35) There exist exactly n stable branches and exactly n unstable

branches and alternately for each critical point.
All stable branches approach the corresponding critical points from another endpoints as
t increases. On the other hand, the sign of the outer normal derivative of @ on I is

positive, hence the following holds
(36) Another endpoint of any stable branch cannot be located on T .

Let a, be the critical point satisfying (p(am ) = min{(p(a)\ aesS } and let }/(t) be a
stable branch of a,, . Then c) implies that }/(t) cannot approach any other critical point
in D, with decreasing ¢ .Hence it follows from (36) and b) that }/(t) approaches T’
and @(){t)) decreases with decreasing ¢ . This yields the first inequality (19).

Let a,, be the critical point satisfying (p(a Iy ) = max{(p(a)\ aesS } To show the second
inequality (19), by c) it is sufficient to prove the existence of an unstable branch of a,,

whose another endpoint is located on T .
Assume that there is no unstable branch of a,, which reaches I'. Then since c)

implies that any unstable branch of a,, cannot approach any other critical point, we
deduce that all unstable branches of a,, reach the outer contour I} . Hence the
continuous curve formed by two of these branches and the point a,, divided D, into two
subdomains; one subdomain lies on the same side as I' and another subdomain lies on
the opposite side of T'. Denote by S’ the set of the point a,, and all critical points in
the latter subdomain and let @, € S” be the point satisfying ¢(a},)=min{p(a)|ac S’}.
Then, if a,, has a stable branch, then in the same arguments as the proof of the first

inequality (19), we note another endpoint of this branch in nowhere to be found. As a result,
we deduce that a/, has no stable branch. This contradicts (35).

Hence we conclude that a@,, has an unstable branch reaching I'.This implies the second

inequality (19).

Remark. To prove (19) in the case 99 <0, it is sufficient to change the sign of
nr,

the time ¢; we may omit the detail.

1.2 Linear stability of stationary solution
In this subsection we shall analyze linear stability of the stationary solution
obtained in the previous subsection. On the assumption that a vortex sheet is a simple
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closed curve close to a circle, we rewrite the nonstationary problem (5) and (6) in the
complex form that is easier to handle; without a loss of generality, we may assume that
the vortex sheet F(t) is close to unit circle with center O:

r(0)={1+ (1.0 |- < 1< 7}
where r(4,¢) is a real-valued smooth periodic function of the period 27 in A . Then,
the stationary solution is

(37) I“Oz{eiﬂl—le/1<lr}, Q, =1
And we put
(38) U(41)= *“{Vl (2.1)+ in (ﬂ o)t
Q)
2 dA
p-'.zre i _”7' 1+p(/1,ﬁ.’,t)

where the notation vp. | stands for Cauchy’s principal value of the integral and

HA,0)e ™ —r(A 1) ™

(39) p(A A1) =

Sih i
e —e
Then we can rewrite (5) and (6) by
or
(40) I Rey -4
ot 1+r
(41) LI amul=o.
ot A l+r
To estimate the singular integral (38), we introduce the Hilbert transform H defined by
(42) ulrla)=- —vp [ e
Then we have
Lemma 3. Let z,(A)=e™ . Then,
_ - ind
) O
ie" n<0

In addition, for p given by (39)

s el ={ 1] 2 )= (20

Proof. Since (43) is well known, it may be sufficient to prove (44). Expanding r in
Fourier series: (4,1)= Z r,(t)e™ | we get
n

(45) p= _irnﬂ [’ZI i VI+1 k lkﬂ ]+ ir [ e —i n k ikl'j .
k=0

n=l1 k=1
Hence it follows from (43) that
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oo oo

(46) Hlp(A,tA)=iD nry iR P> (r= 1),

n=0

n=1
o inA . ind
= zZlnlr"e - IZrne
n

=iH a_r —ir
oA

This completes the proof.

Corollary. Let f be a real-valued function with | = Zn f ,,eiM . Then
(47) Re. H[fJA) =~ sen(n)f,e™ , m.H[r[2)=-f,

n#0

Proof. Noting 7,1 = f_, , we immediately obtain (47) from (43).

Putting Q=Q,+w=1+w, and expanding U formally with respect to p, we have

a9 =Lt phe S - ]

n=l1
Hence from (40) and (41), together with lemma3 and corollary, we can get the linearized
equations around (37):

49 e Re.H|w]=0

(50)

dw 1dw or 10 or
-— - —— — _H|l—
of 204 04 201 |04

. . . . d .
Differentiating (49) with respect to 4 and putting p = 2 we rewrite (49) and

Y]
(50) by
dp ladp 10
1 o __9% 2 Hlw]=
(51) 291 231 l=0
(52) 00 190, 19 ylpl=o.

o 20 PTam

Then we have

Theorem 2. If an initial disturbance {po,a)o} is represented as superposition of e modes,
then the stationary solution {FO,QO} is stable. If Fourier coefficients of {po,a)o} contain
another modes, then {FO,QO} is unstable.
Proof. Fourier coefficients {p,,m,} (note p, =p_,,®, =w.,) of (51), (52) satisfy

the following simple ordinary differential equations which we integrate easily
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(53) %pn(t)—igpn(t)—@wn(t)=0
o ()i ()12 1] ()20
dt n 2 n 2 n .

Then solutions of above equations with initial values {p,? R a),? } (n=0,12,---) are as

follows.

(54) polt)=p0, @lt)=a) -pot,

65) pi(0)= o7 il b + o +iat ],
o (t)= %{(wf’ +ipl k" + (ol +ipl |}

(56) Ppa(0)= (0% + @Bk, @y(1)= e

for n=3

1 n ,ln(n72)t " _ n(nfz)t n—it
(67 p,(0)==1] p° +‘/—a),? e 2 +|pl- e 2 le?
2 n—-2 n—-2

Hence we can obtain the required result.

Remark. Contrary to the above results, the stationary flow defined as (8) is
unstable for any Fourier mode of initial disturbance.

2. Nonstationary problem

C. Sulem, P.L. Sulem, C. Bardos and U Frisch [5] prove the local existence for the
nonlinear problem of the vortex sheet close to a straight line on the basis of an abstract
Cauchy-Kowalewski theorem in the formulation of Nishida [3]. Existance theorem for our
cases also relies on [3]; our proof seems to be simpler than that in [5]. To estimate
singular integral operators, we use a method of Fourier expansion; this idea is suggested
by [2].

We introduce a scale of Banach spaces.
Definition. Let B, denote the Banach space of 27 -periodic functions: for

f= Z f,e™* satisfying
n

1Ay =2 Mol <.
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and for ¢>0,let B, denote the subspace of B, with norm
I, = Xl <o

The functions which belong to B, are analytic in the strip:
Witiue clae ri2az |y <q).
Moreover, we have

Lemmad4. For ¢>0 andfor f,geB,, f-g€B,, and %qu' (0<q’ <q) with
(58) |7, S||f || e,
(59) Hai

<

q-
Proof. From f (Z o _mgm)e , we get

Ir-el, = XM e
n m
<2l e =111, e,

m,n

Inequality: Ae~# < (ee)! (£>0)implies

af _ /|n|
A, -2
<< >3

9-9'%

—Zlnle‘( AT

n

oAl —

fule

This proves lemma4.

0
Theorem3. Let q, > 0. Ifinitial conditions such that the analytic continuations of 0, a&%
Q° belong to B, with
0
Il 152 <3
0 |lod 2

qo

then, there exists a constant K such that for |t| <K (qo - q) (0 < q<gqy), the system (40),
(41) has a unique solution {I",Q} which is holomorphic function of 't with value in B, X B,
Proof. We apply an abstract Cauchy-Kowalewski theorem to the system:

(60) o 2
o 1+7
a_p = i Re P .
ot oA
YR
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where p= 3—2, and U is defined by (38). We write the right-hand side of the above

system by F (v(t),t) for a triplet v= {r, p,Q}. Then, to check the hypothesis of an abstract
Cauchy-Kowalewski theorem [3], it is sufficient to prove the following condition:

Let M and & be given positive constants. For any 0<¢'<g<gq, andall v,ve B,
with ||v||q,||v||q <C and for any |t| <d,

(61) Flv,t)-FE.1) , < ——
N
where the constant ¢ depends only on C.

Expanding U: U= Zio(—l)" H[p"Q], where p and H defined by (39) and (42),

respectively, and noting (59) we can immediately get (61) from the following lemma.
Lemmab. Let ¢ bea nonnegative constant. For

~nllo or 1
- b2 [ 14
q

q7 oA
and "Q"q s ||§NZ|| bounded, the following inequalities hold-
q

62) |H[p"§2]| m)lel,

- ool <o 71,

Jor n=1, where ¢, =(2M)"" (n"Q" +2M )

Bla

+fo-d]

ikA zml

Proof. Using expansion p/iﬂ Z Dk , where

~Tham k,m=1
pk,m =3 Tk+m k,mSO

0 otherwise

and |r |—

(64) Z|pk | q‘k+m‘ —|r |+Zznl |I’0
k,m

On the other hand, by (43) we have
Hpiaerala
— z_isgn(kl +"'+k,1 )pkl, 1 pk ” Q e iy ke g by, A

Ky my ey 1

|r | derived from (45), we get

or
aal,
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Hence we have

el 5[ S o
N

ky ek, Amy e m, =N

_ z Pl |eq\k1+m,\ .“|ka . |eq\k,,+m,,\|Ql|eq\l\

ey ook, my e my, L
<MYy ||Q||q
This shows (62). From this, (64) and

DAY~ ALY = {pla 1)~ BAANS pld Y Ha Y

J=0

ol <l -], + | lo-a)),

we obtain

< 3 Jpun Beale sy o, + Cor -2
k,m

+lo-dl |

o o7
o4 94

< c,,["r —7"0 +

This shows (63).
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