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Abstract: 
We prove that a stationary solution of vortex sheet equations is a circle if and only if a 
vortex sheet is a smooth simple closed curve, and investigate the stability of this 
stationary solution. In addition, we prove finite time analyticity of the nonlinear 
nonstationary problem of a vortex sheet which is close to a circle.  
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Introduction 
    We consider the Euler equations for an incompressible ideal fluid for ( )∞∈ ,0t  in the 
plane 
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t
u −∇=∇⋅+

∂
∂

  

(2)                0 div =u  
where ( ) ( )( )txutxuu ,,, 21=  is the fluid velocity and ( )txpp ,=  is the scalar pressure. 

    We are concerned with the motion of vortex sheets of the Euler equations, i.e., an 
irrotational flow is discontinuous across a curve, i.e., vortex sheet  

( ) ( ){ }RRtxt 2 ∈∈=Γ λλ |, ; hence, the vorticity 
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Then the vorticity density ( )t,λΩ=Ω  is defined by 
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The system that governs the evolution of a vortex sheet and a vorticity density on it  
is derived from the Euler equations (1), (2) with the definition of the vorticity (3), 
established in [5]: 
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where 

(7)                 [ ]
λ∂

∂⋅=Ω xu ,  

[ ]u  is the velocity jump across ( )tΓ  and ( ) ( )( )tVtVV ,,, 21 λλ=  is the mean of the two 

velocities on both side of ( )tΓ , and ( )12 , xxx −=⊥ .   

 
A simple illustration is given by 
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where 0Ω  is a constant vorticity density on the 1x -axis. This flow is linearly unstable, 

known as the Kelvin-Helmholtz instability, because the amplitude of the k-Fourier mode 
of an initial disturbance of curves or vorticity densities has an exponential growth in 
time at the rate 0Ωk . C. Sulem, P.L. Sulem, C. Bardos and U Frisch [5] prove the 

existence theorem for the initial data with finite time persistence of analyticity through 
an abstract Cauchy-Kowalewski theorem. J. Duchon and R. Robert [2] show one special 
analytic choice of the initial circulation distribution for which there is a global piecewise-
analytic solution. The work of the above authors is made on the assumption that a vortex 
sheet is close to a straight line. 
 
 
 
1. Stationary problem 

This section is devoted to the consideration of the stationary problem induced from 
(5), (6): 
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and (4).  
 
 
1.1  Stationary solution 

We assume that a vortex sheet is a smooth simple closed curve. Then we have 
    Lemma 1. Let iu  and eu  be the velocities inside and outside the vortex sheet Γ ,   

respectively. Then, 
(11)               0=iu   in the inside of Γ , 

and 
(12)               0=⋅ nue ,  0=⋅τeu   on Γ , 

where n  is an outward normal vector and τ  is a unit tangential vector on Γ . 
    Proof.  By adding (4) and (9) we have 
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
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λ
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λ
xue   on Γ . 

Hence we easily see that iu  vanishes since iu  is both solenoidal and irrotational. 

Substituting this into (10), we get the second equation of (12).  
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    Using the above lemma, we shall rewrite the stationary problem. We note that there 
is a harmonic function ϕ  such that eu=∇ ⊥ϕ  since eu  is solenoidal and irrotational. 

Then it is easy to see 
τ
ϕ

∂
∂=⋅ nue  and 

n
ue ∂

∂=⋅ ϕτ  on Γ . Hence, by virtue of (12), the 

stationary problem is reduced to finding both a smooth simple closed curve Γ  and a 
harmonic function ϕ  outside Γ  satisfying the boundary conditions: 

(14)                1c
n

=
∂
∂ϕ   and  .const=ϕ     on Γ  , 

where 01 ≠c  is the arbitrarily given constant (if 01 =c , then 0=Ω ). 

    First we easily see that the stationary problem has the following solution; if Γ  is a 
circle about 0x  with the length of the circumference L , then ϕ  is represented in the 

form 

(15)                ( ) .1log
2 0

1 const
xx

Lcx +
−

=
π

ϕ      

 
With respect to this stationary problem, harmonic functions must satisfy over-

determined boundary conditions. It hence seems to be a natural question whether or not 
there exists another solution although Γ  is unknown. This uniqueness problem has an 
affirmative answer. 

More precisely, we state 
Theorem 1.  Let Γ  be a simple closed curve of class θ+1C  for some 10 << θ . Let D  be  
the outside domain of Γ  and let L  denote the length of the perimeter of Γ . 
Suppose that there exists a harmonic function ϕ  in D  satisfying the boundary condition (14)  
and  

(16)                ϕ∇  remains bounded in D .   
Then Γ  is a circle and ϕ  has the specific form (15). 

 
    Remark.  1)  Condition (16) seems to be a physically reasonable assumption; this 
means that the velocity of the flow remains bounded at infinity.  2)  It is easy to see 
that the vorticity density is given by π21Lc=Ω . 

 
The following lemma is needed to prove the above theorem.  
Lemma 2.  Let Γ and 1Γ  be simple closed curves of class 1C , where Γ is inside 1Γ .  

Let 1D  be a domain bounded by an outer contour 1Γ  and an inner contour Γ . 

Assume that ϕ  is a harmonic function in 1D  with ( )1DC∈ϕ  satisfying the following  
properties, 

(17)                
n∂

∂ϕ  has a definite sign on 1Γ ,   

(18)                ϕ∇  can be extended by continuity to 1Γ . 
Then, for any critical point 10 Dx ∈  of ϕ , i.e., ( ) 00 =∇ xϕ , the following inequalities hold. 

(19)                ( ){ } ( ) ( ){ }Γ∈<<Γ∈ ξξϕϕξξϕ |max|min 0x . 
 
    This lemma may be known, but for the convenience of the reader, we shall give the 
proof at the end of this subsection.  
    Corollary.  On the assumption of lemma 2, if .| const=Γϕ , then 0≠∇ϕ  in 1D . 
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Proof of theorem1.   
We first show that ϕ  is represented in the form: 

(20)                 ( ) .1log
2

1 constds
x

c
x +

−
= Γ ξξπ

ϕ  

    Let R  be a positive number such that { }Γ∈> ξξ |maxR . We denote by RΓ  a 

circumference about the origin with radius R  and by RB  a domain bounded by RΓ . 

We apply Green’s formula to DBR ∩  for Γ− |ϕϕ  and 
ξπ −x

1log
2
1 .  Using (14) and 

the identity: 11log
2
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                    ( ) ( )xx 21 ϕϕ +≡                  for any DBx R ∩∈ . 

    We know that 2ϕ  (single layer potential and double layer potential) is a harmonic 

function in RB  and that ϕ  and 1ϕ  are harmonic in D . In addition, the identity 

12 ϕϕϕ −=  holds in DBR ∩ . Hence there is a harmonic extension 2
~ϕ  in 2RDBR =∪  

such that 12
~ ϕϕϕ −=  in D . 

    Since ( ) 




=∇ −1

1 xOxϕ  as ∞→x  and (16), 
jx∂

∂ 2
~ϕ

 (j=1, 2) is a bounded harmonic 

function in on 2R . This yields that 
jx∂

∂ 2
~ϕ

 (j=1, 2) is identically constant, and hence we see 

that ( ) .~
2 constxbx +⋅=ϕ , where b  is an arbitrary constant vector. From the property of 

the single layer potential, the equation: 1
|

1 c
n

=
∂

∂
Γ

ϕ
 holds. This, together with (14), yields 

0
~

|
|

2 =⋅=
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Γ
nb

n
ϕ

, and therefore 0=b . Hence we obtain (20). 

We next show that ϕ  satisfies the identity 

(22)                 ( ) ( )




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 −
−=∇
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2
1 exp

rc
xccx ϕϕ     for any Dx ∈ . 

where Γ= |2 ϕc ( ).const≡  and π2/0 Lr = . To this end we begin with proving 

(23)                 ( ) 0≠∇ xϕ     for any Dx ∈ . 
Differentiating (20) we have  
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−−=∇ ξ
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From this, for any RBDx \∈  

                     ( ) ΓΓ∈
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This shows ( ) 0≠∇ xϕ  in RBD \ , and in particular, ( ) 0|
|

≠∇⋅=
∂
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=
Γ

Rxx
x
x

n R

ϕϕ .  

Furthermore, since .| const=Γϕ  holds, applying Corollary of lemma 2 to ϕ  in RBD ∩  

we have ( ) 0≠∇ xϕ  in RBD ∩ . Hence we obtain (23). 

    Since ϕ  is a harmonic function with (23), it is easy to see 

(25)                 ( )xϕ∇log  is a harmonic function in D .    

In addition, since the boundary condition (14) yields ncn
n 1=

∂
∂=∇ ϕϕ  on Γ , ( )xϕ∇log  

satisfies 
(26)                 ( ) 1loglog cx =∇ϕ  on Γ . 

    From (24) and identity:
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 This implies  
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    On the other hand, it follows from (20) that 
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    Consequently, setting ( ) ( ) ( )xrcxx ϕϕψ ∇−= log01  and combining the above results 

(25)~(28) with the assumption for ϕ  we see that ψ  is a harmonic function in D  
satisfying ( ) 1012 log crccx −=ψ  on Γ  and ψ  remains bounded at infinity. Hence from 

the uniqueness theorem for exterior Dirichlet problem we obtain ( ) 1012 log crccx −=ψ  

in D , thus showing (22).  
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22exp
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=Ψ . Then differentiating ( )xΨ  and using (22) we have 
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Differentiating (29) in jx  ( 2,1=j ) yields 
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Since it follows straightforward computation that ( ) 2
0

2 rxx −Ψ  is harmonic in D and 

(22), we also have 
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Hence noting from (29) that ( ) 0≠Ψ∇ x  for any Dx ∈  we have  
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We thus see that ( ) 2
0

2 rxx −Ψ  is a linear function, and moreover since ( )xΨ  satisfies 

(29), we obtain 
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002
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where 0x  is an arbitrary point in 2R . Hence we have 

                     
( )( ) ( ) 2

02
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2 12exp xx
r

x
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xc
−=Ψ=

− ϕ
 

    Noting 2| c=Γϕ  we see that 2
0

2
0 rxx =−  for any Γ∈x . Substituting this into (20) 

we obtain (15). 
    Remark.  The above proof is inspired by [4] and [6]. 
 
    Proof of lemma 2. 

    We shall show that (19) holds for the case 0
1|

>
∂
∂

Γn
ϕ . 

    We begin with investigating the behavior of trajectories satisfying the gradient 
system: 

(33)                 ( )x
dt
dx ϕ∇= . 

As is known the theory of ordinary differential equations, noncontinuable solutions of 
(33) have the following properties 

a) Trajectories cannot intersect each other at any regular point of ϕ . 
b) Both endpoints of a trajectory are certainly located on the boundary of 1D  

or at some critical point of ϕ  in 1D . 

c) ( )( )txϕ  is a strictly monotone increasing function in t . 
    We denote by S  the set of all critical points of ϕ  in 1D . Then S  is a finite set 

since it follows from 0=ϕ△  that the critical points are isolated. To study the behavior 
of trajectories in the neighborhood of a critical point we expand the right-hand side of  
(33) into Taylor series at each point Sa ∈ . Using 0=ϕ△  and introducing polar 

coordinates ( )θ,axr −=  we can rewrite (33) in the neighborhood of a  as follows. 

There exists 2≥n  for each Sa ∈ such that 
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(34)                ( ) ( )nn rOncr
dt
dr +−= −

0
1 cos θθ  

                  ( ) ( )1
0

2 sin −− +−−= nn rOncr
dt
d θθθ

 

where the constants c ( )0≠c  and 0θ  depend only on the values of n -th derivatives of 
ϕ  and a . 

    The above equations read that behavior of trajectories in the neighborhood of a 
degenerate critical point, i.e., the case 3≥n , is similar to that in the neighborhood of a 
saddle point corresponding to the case 2=n ; more precisely, 
(35)                  There exist exactly n stable branches and exactly n unstable  

branches and alternately for each critical point. 
All stable branches approach the corresponding critical points from another endpoints as 
t  increases. On the other hand, the sign of the outer normal derivative of ϕ  on 1Γ  is 

positive, hence the following holds 
(36)                 Another endpoint of any stable branch cannot be located on 1Γ . 

    Let ma  be the critical point satisfying ( ) ( ){ }Saaam ∈= |min ϕϕ  and let ( )tγ  be a 

stable branch of ma . Then c) implies that ( )tγ  cannot approach any other critical point 

in 1D  with decreasing t . Hence it follows from (36) and b) that ( )tγ  approaches Γ  

and ( )( )tγϕ  decreases with decreasing t . This yields the first inequality (19). 

    Let Ma  be the critical point satisfying ( ) ( ){ }SaaaM ∈= |max ϕϕ . To show the second 

inequality (19), by c) it is sufficient to prove the existence of an unstable branch of Ma  

whose another endpoint is located on Γ . 
    Assume that there is no unstable branch of Ma  which reaches Γ . Then since c) 

implies that any unstable branch of Ma  cannot approach any other critical point, we 

deduce that all unstable branches of Ma  reach the outer contour 1Γ . Hence the 

continuous curve formed by two of these branches and the point Ma  divided 1D  into two 

subdomains; one subdomain lies on the same side as Γ  and another subdomain lies on 
the opposite side of Γ . Denote by S ′  the set of the point Ma  and all critical points in 

the latter subdomain and let Sam ′∈′ be the point satisfying ( ) ( ){ }Saaam ′∈=′ |min ϕϕ . 

Then, if ma′  has a stable branch, then in the same arguments as the proof of the first 

inequality (19), we note another endpoint of this branch in nowhere to be found. As a result, 
we deduce that ma′  has no stable branch. This contradicts (35). 

Hence we conclude that Ma  has an unstable branch reaching Γ . This implies the second 

inequality (19). 

    Remark.  To prove (19) in the case 0
1|

<
∂
∂

Γn
ϕ , it is sufficient to change the sign of 

the time t ; we may omit the detail. 
 
 
1.2  Linear stability of stationary solution 
    In this subsection we shall analyze linear stability of the stationary solution 
obtained in the previous subsection. On the assumption that a vortex sheet is a simple 
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closed curve close to a circle, we rewrite the nonstationary problem (5) and (6) in the 
complex form that is easier to handle; without a loss of generality, we may assume that 
the vortex sheet ( )tΓ  is close to unit circle with center O: 

              ( ) ( )( ){ }πλπλ λ <≤−+=Γ |,1 ietrt  

where ( )tr ,λ  is a real-valued smooth periodic function of the period π2  in λ . Then, 
the stationary solution is  

(37)                 { }πλπλ <≤−=Γ |0
ie , 10 =Ω  

And we put  
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where the notation  v.p.∫ stands for Cauchy’s principal value of the integral and 

(39)                 ( ) ( ) ( )
λλ

λλ λλλλ ′−−

′−−

−
′−=′

ii

ii

ee
etretrtp ,,,,  

Then we can rewrite (5) and (6) by 
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To estimate the singular integral (38), we introduce the Hilbert transform H  defined by 
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Then we have 

    Lemma 3.  Let ( ) λλ in
n ez = . Then, 
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    In addition, for p  given by (39) 

(44)                 ( )[ ]( ) ( ) ( ) ( )







−





∂

⋅∂=⋅ trtrHitpH ,,,, λλ
λ

λλ . 

    Proof.  Since (43) is well known, it may be sufficient to prove (44). Expanding r  in 

Fourier series: ( ) ( )=
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Hence it follows from (43) that 
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This completes the proof. 
 
 
 

    Corollary.  Let f  be a real-valued function with =
n

in
neff λ . Then 
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0
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nefnifH λλ , [ ]( ) 0.Im ffH −=λ    

    Proof.  Noting nn ff −= , we immediately obtain (47) from (43). 

 
    Putting ωω +=+Ω=Ω 10 , and expanding U  formally with respect to p , we have 
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











−−+−+= 
∞

=1

11
2
1

n

nn ppHpHHU ωω .   

Hence from (40) and (41), together with lemma3 and corollary, we can get the linearized 
equations around (37): 
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    Differentiating (49) with respect to λ  and putting 
λ

ρ
∂
∂= r

, we rewrite (49) and 

(50) by 

(51)                  [ ] 0
2
1

2
1 =

∂
∂−

∂
∂−

∂
∂ ω

λλ
ρρ H

t
   

(52)                  [ ] 0
2
1

2
1 =

∂
∂−+

∂
∂−

∂
∂ ρ

λ
ρ

λ
ωω H

t
.   

 
Then we have  

    Theorem 2.  If an initial disturbance { }00 ,ωρ  is represented as superposition of λie± modes, 

then the stationary solution { }00 ,ΩΓ  is stable. If Fourier coefficients of { }00 ,ωρ  contain 

another modes, then { }00 ,ΩΓ  is unstable. 

    Proof.  Fourier coefficients { }nn ωρ ,  (note nn −= ρρ , nn −= ωω ) of (51), (52) satisfy 

the following simple ordinary differential equations which we integrate easily 
  



湘南工科大学紀要 第 53 巻 第１号 

－ 32 － 

(53)                   ( ) ( ) ( ) 0
22

=−− t
n

tnit
dt
d

nnn ωρρ  

                     ( ) ( ) ( ) 0
2

1
2

=









−+− t

n
tnit

dt
d

nnn ρωω . 

 

    Then solutions of above equations with initial values { }00 , nn ωρ  ( ,2,1,0=n ) are as 

follows. 

(54)                  ( ) 0
00 ρρ =t ,  ( ) tt 0

0
0
00 ρωω −= ,   

(55)                  ( ) ( ) ( ){ }0
1

0
1

0
1

0
11 2

1 ωρωρρ ieit it ++−= , 

( ) ( ) ( ){ }0
1

0
1

0
1

0
11 2

1 ρωρωω ieit it +++=            

(56)                  ( ) ( ) itett 0
2

0
22 ωρρ += ,  ( ) itet 0

22 ωω =  

 
for 3≥n                          

(57)                  ( )
( ) ( )

tnit
nn

nn
t

nn

nnn ee
n

ne
n

nt 22
2

002
2

00

222
1
























−
−+











−
+=

−
−

−

ωρωρρ    

                   ( )
( ) ( )

tnit
nn

nn
t

nn

nnn ee
n

ne
n

nt 22
2

002
2

00 22
2
1






















 −−+








 −+=
−

−
−

ρωρωω .   

Hence we can obtain the required result. 
 
    Remark.  Contrary to the above results, the stationary flow defined as (8) is 
unstable for any Fourier mode of initial disturbance. 
 
 
 
2. Nonstationary problem 
    C. Sulem, P.L. Sulem, C. Bardos and U Frisch [5] prove the local existence for the 
nonlinear problem of the vortex sheet close to a straight line on the basis of an abstract 
Cauchy-Kowalewski theorem in the formulation of Nishida [3]. Existance theorem for our 
cases also relies on [3]; our proof seems to be simpler than that in [5]. To estimate 
singular integral operators, we use a method of Fourier expansion; this idea is suggested 
by [2]. 
 
    We introduce a scale of Banach spaces. 
    Definition.  Let 0B  denote the Banach space of π2 -periodic functions: for 

=
n

in
neff λ satisfying  

                  ∞<=
n

nff 0 ,   
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and for 0>q , let qB  denote the subspace of 0B  with norm 

                  ∞<=
n

nq
nq eff .   

The functions which belong to qB  are analytic in the strip: 

{ }qZRCi <∈∈+ μπλμλ 　,2/| . 

Moreover, we have 

    Lemma 4.  For 0>q  and for qBgf ∈, , qBgf ∈⋅ , and qBf
′∈

∂
∂
λ

( )qq <′≤0  with 

(58)                   qqq gfgf ≤⋅  

(59)                   q
q

f
qq

ef
′−

≤
∂
∂ −

′

1

λ
 

    Proof.  From ( ) ( ) ( )  −=
n

in
m mmn egfgf λλλ , we get 

                        −=⋅
m

mmn
n

nq
q gfegf  

                              qq
nm

m
mq

nm
mnq gfgefe =≤ −

−

,
 

Inequality: ( ) 1−− ≤ ee ελ ελ  ( 0>ε ) implies 

                      ( )  ′−−′

′
==

∂
∂

n n

nq
n

nqq
n

nq

q
efenfenf

λ
 

                            ′−
≤

−

n

nq
n ef

qq
e 1

qf
qq

e
′−

=
−1

 

This proves lemma4. 
 

    Theorem3.  Let 00 >q . If initial conditions such that the analytic continuations of 0r , 
λ∂

∂ 0r , 

0Ω  belong to 
0qB  with 

                       
0

0r , 
2
1

0

0
<

∂
∂

q

r
λ

, 

then, there exists a constant K  such that for ( )qqKt −< 0  ( 00 qq << ), the system (40),  

(41) has a unique solution { }Ω,r  which is holomorphic function of t  with value in qq BB × . 

    Proof.  We apply an abstract Cauchy-Kowalewski theorem to the system: 

(60)                 U
r

U
t
r .Im

1
.Re

+
−=

∂
∂ ρ  

 







+

−
∂
∂=

∂
∂ U

r
U

t
.Im

1
.Re ρ

λ
ρ   

                 0.Im
1

1 =





 Ω

+∂
∂+

∂
Ω∂ U

rt λ
, 
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where 
λ

ρ
∂
∂= r , and U  is defined by (38).  We write the right-hand side of the above 

system by ( )( )ttvF ,  for a triplet { }Ω= ,, ρrv . Then, to check the hypothesis of an abstract 
Cauchy-Kowalewski theorem [3], it is sufficient to prove the following condition: 
    Let M  and δ  be given positive constants. For any 00 qqq <<′≤  and all qBvv ∈~,   

with Cvv qq <~,  and for any δ<t , 

(61)                 ( ) ( )
qq

vv
qq

ctvFtvF ~,~, −
′−

≤− ′  

where the constant c  depends only on C . 

    Expanding U : ( ) [ ]ℵ

=
Ω−=

0
1

n
nn pHU , where p  and H  defined by (39) and (42), 

respectively, and noting (59) we can immediately get (61) from the following lemma. 
 
    Lemma5.  Let q  be a nonnegative constant. For 

                 
2
1~

,,~,max 00 <












∂
∂

∂
∂=

qq

rrrrM
λλ

 

and qΩ ,
q

Ω
~

bounded, the following inequalities hold:   

(62)                 [ ] ( ) q
n

q
n MpH Ω≤Ω 2  

(63)                 [ ] [ ]













Ω−Ω+

∂
∂−

∂
∂+−≤Ω−Ω

qq
nq

nn rrrrcpHpH ~~~~~
0 λλ

 

for 1≥n , where ( ) ( )MnMc q
n

n 22 1 +Ω= − . 

    Proof.  Using expansion ( )  ′=′
mk

imik
mk eepp

, ,, λλλλ , where 

                     







≤
≥−

= +

+

otherwise
mkr
mkr

p mk

mk

mk

　　　

　　

　　

0
0,
1,

,  

and nnn rrr ==− , derived from (45), we get 

(64)                  
∞

=

+

∂
∂+=+=

mk n q

qn
m

mkq
mk

rrernrep
, 1

00, 2
λ

 

    On the other hand, by (43) we have 

                     ( )[ ]( )λλ Ω⋅ npH ,      

( ) ( )λlmmkki

lmmkk
lmkmkn

nn

nn
nn

eppkki ++++++ Ω++−= 



 11

11
11

,,,,,,
,,1sgn  
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Hence we have 

                     [ ] Nq

N Nlmmkk
lmkmkq

n epppH
nn

nn  












Ω=Ω

=++++++ 



11

11 ,,  

                               lq

lmmkk
l

mkq
mk

mkq
mk eepep

nn

nn

nn Ω= ++

,,,,,,
,,

11

1

11

11


  

                              ( )
q

nM Ω≤ 2  

This shows (62). From this, (64) and 

                      ( ) ( ) ( ) ( ){ } ( ) ( )
−

=

−− ′′′−′=′−′
1

0

1 ,~,,~,,~,
n

j

jjnnn pppppp λλλλλλλλλλλλ  

we obtain  

                     [ ] [ ] ( )[ ] ( )[ ]
q

n
q

nn
q

nn pHppHpHpH Ω−Ω+Ω−≤Ω−Ω
~~~~~  

                                        
( ) ( ) Ω−Ω+Ω−≤ −+ ~22~ 1

,
,,

n
q

n

mk

mkq
mkmk MMnepp  














Ω−Ω+

∂
∂−

∂
∂+−≤

qq
n

rrrrc ~~~
0 λλ

 

This shows (63). 
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