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 ABSTRACT.  A  semilinear  evolution  equation  of the type  ut-ri"-gi(x,  t, ">+g2(x,  t, u)=:f  on

 9 ×(O, T) is studied  in the space  Li(M), where  9 is a  bounded dornain in R", and  g,(x, t, r)  and

 gE(x, t, r)  are  monotone  continuous  with  respect  to r  and  measurable  with  respect  to x  and  t. An

 existence  theorem  for the initial value  problem  associated  to this  semilinear  equation  is proved,

 We  then  apply  this existence  result  to solve  the  preblern u,-du-uP+uq=v  and  u(･,  O)=Ir with

 measures  v  and  y.

   Introduction.

   In this paper we  study  semilinear  evolution  equations  of  the type

                     u,-du-gi{x,  t, u)+g2  (x, t, u)  =f  in Q ,(O.1)
                     u(･,O)=u,  in 9,  u=O  on  OOx(O,T)

where  Q=2 × (O, T) and  9  is a  bounded domain  in R". Here  gi(x,t, r),i=1,2,  are  given
functions  on  QxR  which  are  rneasurable  in (x,t) and  continuous  nondecreasing  in r, and

fand  uo  are  given functions on  Q  and  9  respectively.  We  consider  (O.1) in Lt spacefi:
Namely  we  shall  prove  the  existence  of  continuous  curve  u;  [O, T].Li(9)  satisfying  (O.n
in the sense  of  distributions. We  next  apply  the above  existence  theorem  to the problefu

                   ut-du-ci(u')P+c2ululg-i=:v  in Q
(O.2)
                   u(･,O)=pt  in 2,  ec=O  on  OOx(O,T).

Here, u'=max  {u, O},P,g>1, ct,c220,  and  p and  v  are  given  bounded  Borel measures  on  9
and  Q, respectively.  If ci==O  or  c2==O,  this type  of  problem  has been considered  by many

authors.  Among  others,  Weissler [17], [18] showed  the  existence  of  local solutions  of

(O.2) in the case  where  c2:=O,  v=O  and  pteL'(9)  for r>N(P-1)12,  and  Baras and  Pierre

[5] extended  some  results  of  [17] to the case  where  pt,vare  Borel measures.  On  the

other  hand,  Baras  and  Pierre [6] and  Brezis and  Friedman  [7] dealt with  (O.2) in the  case

of  c,=O.  In our  argument  their results  are  derived from  our  result  for (O,1) by setting

g,(x,t,u) appropriately.  Thus  we  offer  a unified  treatment  of  the  type  of  problem  (e.2).
Moreover, Baras and  Pierre [5] obtained  only  an  

"integral"

 solution  which  is in some

sense  the  weakest  definition of  solotions.  Our  results,  however,  provide us  with  more
"strict"

 solutions.

   To  solve  (O.1) we  shall  ernploy  the standard  successive  approximation  method.  In this
procedure the  estimate  of  the  approximations  in an  appropriate  scale  plays an  essential

role. To  obtain  that  we  use  a  new  a  priori estimate  on  integral solutions  of  (O.1) with

*
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g2iO.  This type  of  a  priori estimate  was  first proved by Baras and  Cohen  I4] for integral
solutions  to homogeneous  equations  of  the  type

                     ut-du-gi(")::=O  in Q.

                     u(･,O)==uo  in 9,  u=O  on  09 × (O,T].

To obtain  the  a  priori estimates  on  the  approximations  it is necessary  for us  to extend

their results  to the  inhomogeneous  oase.

   The outline  of  this paper  is as  follows: In Section 1 we  present  the notations  used

in this paper  and  some  known  results  about  linear heat equations.  In Section 2 we  deal
with  a  priori estimates  on  the integral solutions  which  are  crucial  in our  arguments.  In
Section 3 we  give  the existence  theorem of  solutions  of  (O.1) which  is our  main  result.

Finally, Section 4 is applications  of  the existence  theorem  to the type  of  problem  (O.2).

1. Preliminaries.

   Throug'hout  this  paper  9  will  denote a  bounded  open  set  in R"(N)1)  with  smooth

boundary  09. Let  T>O  and  Q=Ox(O,T).  For  lgP<oo  Vl'}3･i(Q) is the  Banach  space

consisting  of  the  elements  u  of  Lp(Q) such  that their generalized  derivatives OulOxi,
02u/Ox`xj and  aulOt (written ut, uiJ and  u,, respectively,  in brief) belong to LP(Q) for i,]'=
1,2,･･･,N; with  the  norm

                                         N N

                       lu]2.i.ilulp+lutlp+ Z  luilp+ Z  lutjlp
                                         t=1  i,s'--1

where

                            ]Ul.=(IQ ]"(x, t)]p dxdt)"P .

For  ISp<oo  and  s>O,  Ws,p(9) denotes the usual  Sobolev space  with  the  norm  II･i:,,. (see
[1, Section 7]). We  denote the  norm  of  u  in LP(9) by [lull., i.e.

                             Ilullp=(Iiu(x)]pdx)i" .

    eLet

 W;''(Q)  denote the  closure  of  Ceco(Q) in the  space  W;2±'(Q)  and  Wa'p(9)  denote  the

closure  of  Ceco(9) in the  space  W'tP(9). For  convenience  of  notation  we  set

                        X=L-(O,  T; Li(9))nLi<O, T; Wl･i(9))

and  .

                       JYli =C([O,  T]; Li(9))nLi(O, T;  varl･i<9)) .

mb(9)  and  mb(Q)  will  denote the space  of  bounded  signed  Radon  measures  on  9  and･Q,

respectively.  These  spaces  are  equipped  with  the  weak*  topology,  i.e･, lim.-...Fc.=p in

mb(9)  if and  only  if

lirnn-coI.ipdgen=:!a¢dpt
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for all ipeCo(9) (the space  of  bounded  continuous  functions on  9). Finally, Y'  will

denote the  nonnegative  cone  of  a  vector  lattice Y:

   For reference  we  collect  some  well-known  results  about  linear heat equations  in the
fellowing lemma  (For the proofs  see  e.g.  [6, Lemma  3.3] and  [7]):

   LEMMA  1.1. For  Ftemb(O)  and  vEm,(Q)  there exists  aunique  solution  u  of the Problem

                       ueX,  u,-du==v  in ev(Q)
(1'1) ess  lim,-..,u(-,t)=p in mb(2)･

Moreever, if

                           L: m,(9)xm,(Q)->Li(Q)

is given by u=L(pt,p)  where  u  is the solution  of (1.1), then  we  have:

   (a) L  is an  order  Preserving maPPing.

   (b) For  s, q21  with  (21s}+(IV7q)>N+1 there exists  a  constant  C=C(s,q,N)>O  such

that

                 IluHLco(o.T;Lice))+llul]Ls(o,r,rue･q(o))E{;C(ltt[(O)+lvl(Q))･

   (c) ly' lf{r<(N+2)IN  then  L  is a  cetnPact  operator from Li(9)xL'(Q) into L'(Q).

   (d) ij vef+v,  withfeL'(Q)'  and  p,emb(Q),  then  we  have

                 U(X,  t)=Il  !.G(t-s, x, yVf(y, s)dyds+L(pt,  ,,)(x, t)

.fbr a.e.  (x, t), where  G(t,x,y) denotes the Green junction of the heat eq"ation  with  Dirichlet
bo"ndaTzJ; condition.

   The  next  lemma  may  be already  known,  but  it seems  to me  that there is no  literature

proving  it explicitly,  so  we  give the proof  of  it for completeness.

   LEMMA  1.2. Let g,: QxR-R  be a  junction satisping  the following conditions:  (i)
For  each  reR,  g2(x,t,r) is measurable  on  Q; (ii) For  a.e. (x,t) in Q, g2(x,t, r) is continuous
and  nondecreasing  in r  and  g,(x,t,O)=O;  and  (iii) supi,is.lg2(x,t,s)1ELi(O)  fbr each  r;}iO.

Then fbr ueeLi(2)  and  fELi(Q) the Problem

                        uE  X6  , g,(･, ･,  u)  eLi(Q)  ,

(1.2) u,-da=-g,(x,t,u)+f  in :iZi'(Q)

                        u(･,O)=uo  in O

has a  unique  solutien  u.  Moreover,  if we  dofne

                           S: Li(9)xLi(Q)-Li(Q)
                                                      s

by u=S(uD,f)  tvhere  u  is the selution  of (1.2), and  ijr n=S(a,,f)  tvith  de,eLi(P) and

f"eLi(Q), then  we  have

(1･3) ll(u-a)+11.co(,,,,.ico,,+1(g,(･,･,u)-g,(･,･,a))+[,s;11(u,-a,)+H,+Kf-f')+I,
where  r'=max  {r,o}. in Partic"lar, S is an  order  Preserving maPPing.

                                 -85-
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   ProofL We  shall

min{g,(x,t,r),n}}.  By
satisfying

(1.4)

For

It is

M  )iiO

follow the  idea of  [9]. For each

the Schauder fixed point theorem

and  reR

well-knownthat

(Un)t-AUn+gEn(X, t, Un)  of
Un(',  O) =:opo  .

set

Pu(r)=I

 1

 o-1

integer n

 (see e.g.

in e'(Q),

if r>M,

if-Mf{grs{;M,
if r<-M.

set  g2.(x, t, r) =max  {-n,
[16]) there  exists  u.G  Xli

!, (a!at-a)u･pif(u)dxdt}lr-Ip. 1u(x, o>ld.

for allue  Xh n VVGP･i(O),where 9it={xG2;lu(x,  O) 1 >M}.Using  this inequality we  find that

I,..e.. ig2"(X' t' U")1 dXdtSI,..,.. 1fl dXdt+I,.,,.. 1Uo(X)1dx .

In particular, [g2.('
{u.} is precompact
assume  that

p'tUn)l1

in L'(Q)is

 bounded  in n  and

for 1-<r<(N+2)/N.hence

 it
 Afterfollows

 from  Lemma  1.1
extracting  a  subsequence(c)wethatmay

On  theotherhand

U.-ugEn(', in Li(Q),
･, u.)-gt(-,  ･, u)Un-ua.e..a.e.,

MMeaS  [iUnl>MIS{; I,..,.. IUnl dXdt

             SC(lg!n(', ',  Un) Ii+lfli+ ]iUo ll 
!)

andhence  sup.  rneas  [lu.[>M]f{gConst./M.O as  M->oo.
Given  E>O  we  can  therefore  choose  an  M  so  that

I,..:.. Ifl dXdt+I,.,,.. Iuoldx<sf2

Since hif(x, t) !supi,Tsy  [g2(x, t, M)l
a  6=a(s)>O  such  that

belongsto  Li(O)

for all

by our

n})1.

hypotheses, wecanalsochoose

I.hM(X,t)dxdt<e/2 whenever

Consequently, forsuch  an  A  we  obtain

AcOand  measA<6.

I. 1gen(X, t, Un)1dXdtKI.  h"(X, t)dXdt+!,..,.. [g2n(X, t, ttn)IdXdt<e
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the Vitali convergence  theorem,  g2.(･, ･,".)-g,(.,  .,u)  in Li(Q). Therefore, passing  to

lirnit in (1.4) yields that u  is the desired solution.  The  uniqueness  will  follow from
Lemma  3.4].

Finally, to show  (1.3) we  set w=u-a,  Recalling

!, (wt-dw) ･sgn'w  dxdt}}i l. [tv(･, T)Idx 
-I.

 lw(･, O) [dx

where  sgn'r=1  for r>O  and  sgn'r=O

           [jw(･,t)ll,-"w(･,o)ll,sg-!:
for all  O:{{tE{T, which  gives (1.3).

 for rE!O,  we  can  get

I. [{g2(x, t, u)-g2(x,  t, M}'+(f-f')+]dxdt

E

2. A  priori estimates  on  solutiens

   In this section  we  will  give  an  a  priori estimate  on  
"solutions"

 of  a  semllinear･para-

bolic equation  with  nonmonotone  nonlinearity.  For this purpose  let g: QxR'.R'(R'=
[O, oo))  be a  function  satisfying  the following conditions:

   (gl) For  each  reR'  g(x,t,r) is measurable  on  Q, and  for a.e.  (x,t) in Q  g(x,t,r) is

continuous  and  nondecreasing  in r  and  g(x, t, O)==O.

   (g2) For  each  reR'  there  exists  p.EL"'i(Q)  such  that  g(x,t,r)-<p.(x,t)  for a.e.  (x,t)
in Q･
   (g3) For a.e.  (x,t) in Q  g(x,t,r) is convex  in r.

   (g4) There  exist  constants  r>1  and  a20  such  that  g(x,t,2r);}l2rg(x,t,r) for all  221

r2a  and  a.e.  (x, t) eQ.

   We  here note  that if r>1  then  g(r)=(r')r is a typical function satisfying  (gl)-(g4).
   Now,  for yemb(9)',vGmb(Q)"  and  2}lil consider  the following problern

           (R,; Ft,v) ILK2)J,)".[:i-,g(,Xfi"ISal=2".;llL,Q.'. ,..(,,  .).

Following Baras and  Cohen  [4] we  say  that  ua  is an  integral solution  of  (Ilz; F!,v) if ua:

Q.[e, +oo] is a  measurable  iunction satisfying

                 u2(x,  t) =I:  I. G(t-s, x, y)g(y, s, u2(y,  s))dyds+  vl(x, t)

for a.e.  (x,t) in Q, where  Pa =L(Rpt,2v)  and  L  is the operator  defined in Lemma  1.1. We

say  that q  is a  least integral solution  of  (A; pt,v) if U>  itself is an  integral solution  of

(Ra; st,v) and  whenever  ua  is any  integral solution  of  (Ili; ", v) we  have  UhE{;uR a.e.  on  Q.
We  here remark  that Ul may  equal  infinity identically, so  we  set

                TI,(pt,v)::=sup{t>-O; Uh is finite for a.e. on  9 × (O,t)} .

   LEMMA  2.1. Let g, 0: QxR'->R'  satisf2y  (gl). 7':hen tve  have:

   (a) There exists  a  least integral solution  of (PIa; ", v).

   (b) ly' gE{:a a.e.  on  QxR'  and  q, a  are  the corresPonding  least integral solutions  of
(R; pt,v), then Ulsg Oh a.e.  on  Q.

                                   -87-
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  .Ple'eqf: Let  vA be an  arbitrary  integral solution  of  (a; ps,p) and  {u"} be the･sequence
defined by

                utreX,  (":>,-du:=g.(x,t,u:-i)+2v in 9'(Q),

                esslimt-+ou:(･,O)=Rpt  in mb(2),

and  ug-=O  on  Q, where  g.=:min{g,n}.  By  Lemma  1.1 this sequence  {u:} exists  and

satisfies

                Ul(X, t) =I1  I. G(t-s, x, y)g.(y, s, u:'i)dyds+  Vl(x, t) .

By  recurrence  we  see  that u:-iEgutrSvzandutrgth  a.e. on  Q. Set U}=lim...u: on  Q. It

follows from  the  monotone  convergence  theorem  that

                 M(X, t)=I: I.G(t-s, x, y)g(y, s, Ul)`lyds+ V}(x, t) .

Hence  Ul is an  integral solution  of  (a; pt,v) satisfying  qSva and  Ulga.  O

   Now,  we  give a  priori estimates  on  the  least integral solutions  of  (Rz; pt, v) with  2=1

which  is crucial  in our  arguments.

   LEMMA  2.2. Let  (gl)-(g4> be satisfied  and  let ptemb(O)'  and  pGmb(Q)'.  Assume  that

T*ETi<pt,v)>O  for some  Ro>1. Then  tve have

(2.1) Ul(x, t) :{{2,rl(2,i 
7i-1)r'`'"i'(Vl(x,

 t)+a)  for a,e.  (x, t)e2x  (O, T*)  .

   boof  We  shall  modify  the argurnents  of  [4]. Let {pj}cCr(9)' and  {v,}cCr(Q)' be
sequences  such  that

                   pJ-pt in mb(9),  vj.v  in mb(Q),

                   supiI]pjlli<+oo  and  supd[vyli<+oo･

For  J'eN  and  2e[1,Re], let u3,i  (written uft for simplicity  if there is no  need  for distinc-

tion or  possibility of  confusion)  be the  sequence  given by

                  us  e W2.･ l,(Q*) ,  Q*igx  [o, T*) ,

(2.2) (u:),-dutr=g(`t,t,u?-i)+Rv, in Q*,

                  u"(･,O)=2g,  in 9,  u"=O  on  OOx[O,T*),

and  u3-=Oon  Q*. We  show  that  this sequence  exists.  Indeed, since  g(x,t,ua)=O  and

v,eL"'i(Q*),  there exists  ul  satisfying  (2.2) with  n=1  (cf. [11, Theorem  9.1]). By  the

embedding  theorem  (cf. [11, Lemma  3.3]) ul  e W2N'i.i(Q*)cC(Q*) and  hence g(x, t, uh)-<p,(x,  ti
by  (g2) where  r=supo*Iu}(x,t)1.  Thus  g(x,t,u}) belongs  to LN":(Q*), and  so  by  [11,
Theorem  9.1] again  there exists  u3  satisfying  (2.2) with  n=2.  Inductively, we  can  obtain

the  sequence  {nl} satisfying  (2.2) for all n.

    By  recurrence  and  (gl), (g3) we  have

                         Pm<utr sg u:+is  Ul on  Q* ,

(2.3)
                         Rur f{;u:  on  Q* .

                                  -gg-
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For simplicity  write  that  nyo=R,r-r/(a,'-i-1). Fix mEN  for the moment.  For v}lve  set

                      E:={(x, t) E  Q*; ur(x,  t) >n(V,(x, t) +a)}

where  V,=L(pf,v,), which  belongs to C2･i(Q*) fi C(O × [O, T*]).

    Suppose now  that there  exists  an  rp.>rpo such  that EvM. iEe.  For  ije[vD, rp.] and  n2m

define

                             g:(v) 
==

 
,.lp,f..cr

 :;' 
-((x{'ti)

and

             te(x, t) =u:"t(x,  t) -g:(n)'uT(x,  t) +ij(gW<rp)r-gn(?))(V,(x, t) +a) .

We  deduce from  (2.3) that

(2.4) 1<2oSg:(if)f{ inf Ua,(x,t)lur(x,t)<+oe
                               Cx,t)EE;

and  from (g4) that

                 g(x, t, u:,)2g(x,  t, grr(rp)uT)}lgcr(T)'g(x, t, ur)  on  E,m .

Hence

          wt-dw=g(x,  t, uS,)+2,v,-g:(rp)r(g(x,  t, ur'i)+pf)+ij(g:(n)'-gT(v))v,

                   )}i{2,-gve(ny)'+lj(grr(v)'-g:(ny))}v, on  ET.

However,  by observing  that Ao-sr+v(sr-s)>-O  whenever  s>Ro  we  obtain

                             w,-dw2)O  on  ET.

On  the other  hand  we  have

                  w;}lgrr.,(v)ur-gr(n)rur+n(g:<v)'-gve(rp))(V,+a)

                    })(g:(rp)r-g:(v)){-ur+v(t7,+a)} on  Er.

Since -uT+rp(VJ+a)2)O  on  the parabolic boundary  O.Q'EE(09 × (O, T"))u(9 × {O}), it follows
from  the  above  inequality and  the  definition of  E:  that

                        wl)O  on  O.E,m=OE:f(9 × {T"}).

Moreover,  w  belongs  to  W2.'Ii(Q*), and  hence  by  the  :rnaximum principle (cf. [15],[12]),
we  haye iv}}iO  on  E?  for nye [vo,v.]･
   For vos!vf{gv'f{v.  we  have

                            t7,+a-<(v')-iuT on  ET,

and  by the fact that w2}iO  on  E,ny,

                  u:ti2g:(v)'uP-(v!v')(gT(n)r-g:(rp))ur  on  Enrn, ,

which  gives

                                   -89-
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                        gT.,(ny')2g:(v)'-(?lv')(g:(v)'-gT(rp))  ･

The  sequence  {gcr(v)}:..i is nondecreasing  and  bounded  by (2.3) and  (2.4). Its limit gm(rp)=
lim.-.g':(o) satisfies

                         gm(7,)2gM(rp)rn(v/v,)(gm(rp)r-gm(v))  .

Hence

                   (d/dT)gm(rp)!(gm(rp)'-gM(v));)1/n a.e. ve  [rpo, rp.] ･

Integrating on  [vo,v.] yields

                       log(rp./rp,) g  !i (sr-s) `- ids  f{; !l, (sr-s)-ids

where  a=gm(rpo)  and  P=g.(T.), from  which  we  obtain

                      rp.gi?,R,!(2,rHi-1)i/(r-D=2,r/(2,r-i-orl(r-i)  .

This means  that E,m--di whenever  v>A,r(A,r-i-1)"`r-i' (written 2, for simplicity).  Con-

sequently,  we  have

<2.5) "p":{rp(Vj+a)  on  Q" for all rp>Ao and  m,1'eN.

   Now  set

                        gk(x, t, r) =min  {g(x, t, r), k} , keN.

For k,1'GNand 2}}tl let v3,i･k be the sequence  given by (2.2) with  gk instead of  g. By

recurrence  we  see  that  .

                        O:{vl･SkKess･j on  O*
(2.6)
                        v:,i,k-<vl"i,Y･kE{lv?'i,S･k'i  on  Q*.

Hence  the limit v{'k(x,t)=lim.-.vT･Y･k(x,t)  exlsts  monotonously  for (x,t) in Q" and  we

have from  Lernma  1.1 (b) that

       su.p iQ. vT,'･kdxdts{C{lg,(x,  t, vr-ii'･k)+vjli+llstjll,}KC{le  m(Q*)+lvjl,+IIstjlL}  .

Here  m(Q*)  denotes the Lebesgue measure  of  Q*. If follows from  Beppo-Levi's theorem
that  v?,j.'-v{.k  and  g,(., ･,vT-i.j,k)->g,(., ･,v{Jk) in Li(Q*) as  m-Dq,  Passing to the  limit
in (2.2) with  gk instead of  g, we  see  that the limit vi･k satisfies

                   vlJkE  IVk･:i(Q*) nLi(O, T*;  VVUji(2)) ,

<2.7) (v{･k),-dvl',k=g,(x,t,vl･k)+vJ in e'(Q*),

                    v{･k(･,O)=y,  in 9.

Since {gk(･, ･,v{Jk)}:=i and  {v,}ee..i are  bounded  in Li(O*) and  {ptJ}r..i is bounded  in L'{2), it
follows from  Lemma  1.1 (c) that {v{･k}r!i and  {Vj}ge..i are  precompact in Li(Q*), so  we  may

assume  that there exists  vleLi(Q*)  $uch  that

                  v{jk->vr  and  Vs->Vl in Li(Q*) and  a.e.  on  Q*
                       '
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as  1'->oo, where  V, =L(",v).  Letting 1'.oe in (2.7) and  then  using  Lemrna  1.1 (d) yield

                vf(x,  t) ==  !1 !. G(t-s, x, y)g,(y, s, vi(y,  s))dyds+  V,(x, t)

for a.e. (x,t) in Q". However,  vSf{vr'if{  U,<+oo  on  Q* by (2.3) and  (2.6) and  hence by
the  monotone  convergence  theorem  the limit vt  =limic-..  vi satisfies

                 vt<x,  t) ==  ! 
`,

 Ig G(t-s, x, y)g(y, s, v,(y, s))dyds+  V,<x, t)

for a.e.  (x,t) in Q*. By  definition, v, is an  integral solution  of  (Pl; p, v)  satisfying  viSUi･

Since U, was  the least integral solutionof  (P,; pt,v), we  must  have  v,=U,.  Consequently,
it follows frorn (2.5) and  (2.6) that  U,=viE;;2o(Vl+a)  a.e.  on  Q'･ []
   Next  we  give a  suMcient  condition  which  ensures  that Ta"(y, v)>O  for some  2>1.  To
this end  we  further assume  that the following condition  holds:

   (g5) There  exists a  constant  b>O such  that g(x,t, b)'i'`r-i' eLl.,(Q),  where  r is the

constant  appearing  in Condition (g4).
   Let g* be the conjugate  function of  g, i.e.

                          g*(x, t, r)=  sup  {ar-g(x, t, a)}
                                   a20

for a.e.  (x,t) in O and  r}i:e.  Following [5] we  set

              Z={e  e Leo(Q>+; supp  e is compact  and  g*(x, t, ele)eE Li(Q)}

where

(2.8) e(x, t) =e4  (x, T-  t) for (x, t) eQ  and  6A=L(O, e).

For  ptGmb(9)'  and  vEmb(Q)'  we  define

                        2vb,.(p, .)  .,,  ,.p  lne(', O)dpt+!, edp

                                 
eEZ

 I, g*(x, t, efe)gdxdt
   LEMMA  2,3. Let (gl)-(g5) be satis,tied.  Let gemb(9)',  vGmb(Q)',T>O  and  A21.  ly"
IVb..(2pt,2v)s{1, then  (Ilx; ",v) has an  integral solution  s"ch  that Tr(pt,v)l}iT.

   Ptoof. Let Vh=L(Rg,Av)  as  before. We  can  easily  see  that

                !e Vledxdt =a!,E('  , O)dpt +2I,  edv f{g !e g'(x, t, e/e)Edxdt
for all 0eZ.  Here  we  used  the assumption  that  N},.(2ge,Rv)f{gl. By  virtue  of  I5, Theorem
2.1] (Ri; p,v) has an  integral solution  uA  such  that  uaeGLi(O)  for all eG2ii{eeZ;  g*(･,-,
aO!e)eeLi(Q)  for some  cr>1}.  To  show  that T,"(pt,p)>-T, let K  be a  compact  subset  of  9
and  T,e(O,T). Set e,(x,t)={(T,-t)'}"oo(x)2" where  r' =r/(r-1)  and  v,eCr(9)"  satisfying

vo=1  on  K  Then, we  want  to show  that  eE(-<e,),-d6,)' belongs to 2. Indeed, define

e by (2.8) where  e is the function above.  The  maximum  principle (cf. [81) irnplies that
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E2ei on  Q and  easy  culculations  imply that  0E{:C{(T,-t)+}r'-iv:r'-2, and  so  er'el-r'sC.

Here  and  in what  follows C  denotes various  constants,  which  need  not  be the same

throughout.  On  the other  hand, (ge)-(g4) deduce that

                       g*(X, t, r)gC{r+g(x,  t, b)-VCr-Drrt} 
,

which  gives that for all  a>1

            IQ g*(X, t, ae/e)EdxdtSCiQ  {e+g(x, t, b)-ii 
{r-i)er,ei-rt}dxdt<

 +oo

by  ig5). Thus  we  obtain  0e2.  Therefore, uaeeLt(Q)  implies that uaeLt(Kx(O,T,)).

Since Kc9  and  T,e(O,T)  can  be taken  arbitrarily,  it follows that u2eLl.,(Q),  and  so

Tx"(pt, v)2T.  []

3. Semilinear equations  in Li.

   In this section  we  will  be concerned  with  the following problem

                  ueIYI),  g,(･,･,u)GLi(Q),  i=1, 2,

(3.1) u,-du-g,(x,t,u)+g2(x,t,")Ef  in en'(Q),

                  u(･,  O)= pte ln 9,

where  gi: QxR.R,f:  Q-R  and  uo:  O->R  are  given functions and  u  is unknow'n.  We

will  solve  (3.1> in Lt spaces  under  the following conditions:

   (Hl) For  reR  and  i=1, 2, gi(x, t, r) is measurable  on  Q.
   (H2) For  a.e.  (x,t) in Q and  i=1, 2, gt(x,t,r) is continuous  and  nondecreasing  with

respect  to r, g,(x, t, O)=O  and  g!(x, t, r))O  for all reR.

   (H3) There exist  r>1, ¢ emb(9)'  and  ipeme{Q)' which  satisfy  the following condi-

tions:

   (i) gi(x, t, r-  w(x,  t)) sg g(r) =-  rr

for r20  and  a.e.  (x,t)eQ, where  w=L(ip, ¢ ) (4 is the operator  defined in Lemma  1.1).

   (ii) IV}, r(ue'  +  e, f'+  ¢ ) --p<1･

   <iii) !, g,(x, t, pA'h(x, t))dxdt<+oo  ,

where  h=L(eco'+e,f++ip) and  p"-"a-pr-i)-r/cr-D.

   (H4) sup  ]g,(x, t, r)1GLi(Q)  for s;}rO.
                        IrlSs

   (H5) w,GLi(9)  and  feLi(O).

   Our  result  of  this section  is the following.

   THEoREM  3.1. Let (Hl)-(H5) be satis]ied.  Then, (3.1) has a  solution.

   Remarks. (a) As  will  be seen  in the proof  of  the theorem,  we  can  replace  g(r) =rr

in Condition (H3) with  the function g<x, t, r) defined on  QxR'  satisfying  Conditions (gl)-
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(g5) in the previous  section.  In this case, however, (H3)-(iii) must  be replaced  by

   (iii)' !, gi(x, t, p-(h(x, t)+a))dxdt<+oo  ,

where  a  is the constant  appearing  in (g4). (b) The  requirement  for gt(x,t,r) not  to be
continuous  in (x,t) but  to be measurable  in (x,t) is essential  in applications  to equations
involving measures  (see the next  section).

   We  will  prove  the theorem  under  the general  conditions  stated  in the remarks  above.

We  begin with  the following

   LEMMA  3.2. Let (Hl)-(H5) be satis)fed.  Then  the Problem

(3.2) 
2t-dz-gi(x,.t,z)=f'  

in
 Q,

                   z(･,  O) =uo'  tn  9,  z==O  on  09 ×(O, T).

has the least integral solution  2. Moreover, we  have

                      z(x, t) s{fi(h(x, t)+a) for a.e. on  Q .

   Proof  Set2o==1/p>1. Since

                        Nb,T(Ao(uo"+e), 2o(f'+ip))=2op=1  ,

it follows from Lemma  2.3 that  T2",(uo'+ip,f'+ip)l)T>O. Hence, by Lemmas  2.1 and  2.2

there exists  a  least integral solution  V  of  (P,; uo'+ip,f'+ ¢ ) such  that

                       V(x, t)f{:P(h(x, t)+a) a.e.  on  Q  .

Set g,(x,t,r)=g,(x,t,r-w(x,t)) where  tv==L@, ¢ ). (Hl), (H2) and  (H3)-(i) imply that g-,E{;g
and  g", satisfies (gl). By  Lemma  2.1 there exists  a  1east integral solution  U  of  (P,; uo"+

e,f'+¢) with  g replaced  by g, such  that ti:{;V.
   On  the other  hand, it is easy  to see  that 2=U-w  is the least integral solution  of

(Pi; uo',f') with  g replaced  by g,. Consequently we  have

                      2f{  US  Vsg fi(h+a) a.e. on  Q  
.
 Z

   Proof  of Theorem  3.1. Let {un} be the sequence  given by

                      u"e  Xh 
,
 g2(･, .,  un)e  Li(Q) ,

(3.3) (un),-A"n=g,(x, t, un]'i)-g2(x,  t, u")  +f  in Y'(Q)  .

                  un(･,  O)=uo  in 9,

and  uO=-w  on  Q. Let {v"} be the sequence  given by (3.3)' which  means  (3.3) with  u",  f
and  uO  replaced  by v",f'  and  uS' respectively,  and  vD=-tv  on  Q. First, we  shall  show

that there exist  sequences  {u"} and  {v"} satisfying  (3.3) and  (3.3)", respectively,  and  the
following property  holds:

(3.4) u"s:v"Sz  a.e. on  Q,

where  z is the least integral solution  of  (3.2). Since g,(x, t, -w(x,  t)) =O  by (H2) and  (H3)-
(i), ui  and  vL exist  by Lemma  1.2. Moreover, if S  is the  operator  defined in Lernma  1.2,

                                  -93-

                                                            NII-Electronic  



Shonan Institute of Technology

NII-Electronic Library Service

ShonanInstitute  ofTechnology

                        Nnt'z*  kij re et ca 23  ig m  2 e

then  ui==S(u,,f)gS("o',f')  =vi  and  O=S(O, O)Kvi=L(eco', -g,(･,  ･,vi)+f')gL("o',f')gz.  In･
ductively, assume  that (3.3), (3.3)" and  (3,4) hold up  to n-1.  Note  that O.<g,(x,t,u"-i)-<

gi{x,t,v"-i)-<gi(x,t,z)Sgi(x,t,pN(h+a)) by  Lemma  3.2. Hence,  Lemma  1.2 together  with

(H3)-(iii) assures  that u"  and  v"  exist.  Since the operator  S has the ordre  preserving pro-
perty, ""=S(uo,g,(.,  ･,""-i)+f)SS(uS,g,(.,  ･,v""i)+f')=:v"  and  v"20.  Moreover,  it follows
from  Lemrna  1.1 (d) that

   v"(x,  t)=!: Ie G(t-s,  x, y)gi(y, s, v"-i)`lyds+L(ue,  
-g2(･,

 
･,
 v")+f)(x,  t)

              :{ !i I. G(t-S, X, Y)gi(Y, S, 2)dyds+L(uo",f')(x,  t) =2(x,  t) .

Thus, (3.4) holds true. Consequently, we  see  that there exist  sequences  {u"} and  {v"}
satisfying  <3.3), (3.3)" and  (3.4).
   Now,  using  the order  preserving  property  of  S  again,  we  find that {u"} is a  nonde-

creasing  sequence.  Use (1.3) with  u  = ± u"  and  a==f==aD=:O to obtain

<3.5) rg2(x, t, u">liL<  lluo lli+lg,(x, t, u"-i)  +f  liS il"olli+[fii+!, gi(x, t, p-(h+a))dxdt ･

Let u==lim.-.u".  Since g,(x, t, u")  converges  monotonously  to g2(x, t, u)  for a.e.  (x, t) in Q,
Beppo-Levi's lemma  together  with  (3.5) yields that g,(.,.,u") converges  to g2(.,.,u) in
Li(e) as  n.oo.  On  the other  hand, since  g,(･,･,u")fgg,(･,･,pN(h+a))eL'(Q), Lebesgue's
convergence  theorem  yields that g,(., ･,u")--,g,(･, ･,u) and  u".as  in Li(Q) as  n-Foo.  The-
refore,  passing  to the lirnit in (3.3) yields  {3.1). N

4. Equations involying measures.

   In this section  we  apply  Theorem  3.1 to the problem

                     ue  Xn  Lq(Q) , u+  G Lp(O) ,

(4.1) ",-du-("')p+ululg'i=p  in 9'(Q).

                     ess  limt-+eu(･,t)Fy in mb(9)  ,

where  ptemb(2),vemb(e)  and  P,q>1. In the case  whepe  the term  ulu]g-i  disappears in

(4.1) this problem  has been treated by many  authors  (e.g. [4], [5], [10], [14f, [17], [18]).
In the case  where  the term  (u')p disappears in (4.1) it was  considered  in [6], [7], etc..

   To  mention  the  results  about  (4.1) let D==9 × (-T, T)  and  recall  that VVt2,"ti(D) de-
                     e

notes  the  dual space  of  VKe'i(D), where  q>1  and  q' =q/(q-1).

   THEoRlijM 4.1. Let P>q>1,  ptEmb(9)  and  vEfn,(Q).  SuPPose that ene  of the follewing
conditions  is satisyied:

   (a) P<(N+2)/N  and

                         pt :lti+tt2,  V=Vl+VS

(4.2) pt,eLt(9),  v,eLi(Q)

                         v2+"206  e za"t･-i(m

where  ila is the measure  en  D  such  that il2(E>=v,(EnQ)  for all measurabie  subset  E  of D,
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and  6 is the Dirac  measure  at  the origin  on  (-T, T).

   (b) p>(N+2)/N, geeL'(2),vGLr(Q)  and  r>P(N-1)/2.

   (c) p=(N+2)fN  ptGL'(9),veL'(Q)  and  r>1.

IVlaen, (4.1) has a  local solution  on  [O, T'] with  some  T'E(O, T].

   THEoREM  4.2. Let  q;}IP>1. Let  
,aEmb(n)

 and  vGmb(Q)  satisyZy  (4.2). Then, (4.1) has
a  global solution  on  [O, T].

   Remark.  Condition (4.2) can  be characterized  by terms  of  capacities  (see Proposition
4.3 below). Thus  Theorems  4.1 and  4.2 extend  some  results  of  [5], [6], [7], [171, [18], and

offer a unified  treatment  for problems  of  the type  (4.1).

   A'oof of Theorem  4.1. We  first assume  that (a) holds. Let  V=L("2,vD. (4.2) implies
that VeLe(Q>.  Indeed,

(4.3) IVIqE{;C[il2+FttQ61t,-ij4

where  1･[-2,-L,, denotes the  norm  of  VVII2･-i(D). We  set

                         gi(x, t, r)=k,(r+  V(x, t)) ,

                         gE<x, t, r)=k2(r+  V(x, t))-k,(V<x, t)) ,

                         uo="i  and  f=vi-k2(V(･,･))

for a.e. (x,t) in Q  and  r  in R;  where  k,(r)=(r')p and  k,(r)=rlr[g-i. Then,  u  is a  solution

of  (4.1) if and  only  if v=u+V  is a solution  of  (3.1) with  those g,, g2, uo  and  f  Therefore
we  must  check  Conditions (Hl)-(H5) in the previous  section.  However,  (Hl) and  (H2) are
obvious.  (H4) and  (H5) follow frorn (4.3). To  show  (H3) we  set

                             ip=ps2' and  ¢ ==vi'.

Set w=L(O,e>  and  h=L(u,･+ip,f'+ip). Noting that Vf{;ws{;h, we  have

                    g,(x, t, r-w)  S: g,(x, t, r-  V)=  r?  for r}llO  ,

and

                   g,(x, t, ah)SC(hP+(V')')E{;ChP  for a>O  .

Since heLp(Q)  whenever  P<(IV+2)/N  (see Lemma  1.1 (c)), (H3)-(i) and  (iii) hold with  r=:P.
To  see  (H3)-(ii) let 0GLe=(Q)'  and  0 have a  compact  support  in Q and  let e(x, t)==S(x, T-t)
for (x, t)eQ  where  g=L(O,e). If

(4.4) 2-(P-i-a-i)(N+2>2)O

holds, then  by the embedding  theorem  (cf. [11]) we  have

(4.5) [el.s:Cie12,t,pf{ICiOlp･

Put C==op'ei-p'. If, furthermore,

(4.6) P<p', P(p'-1)!(p'-P)gaKoo

holds, then  by  H61der's inequality we  have
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]elpgllQCdxdtlUP'IIqeP(p"i)f(p'-P)dxdtlcp'-p)!p'p
                        s:CICII'p'le]Ep'-i)Xp'sgCJcllxp'leljp'--orp'

and  hence

(4.7) lelPE{gC]Cl,.
Take  a==Do.  Since P<(N+2)/Al; it is possible to choose  such  a P satisfying  (4.4) and

(4.6). Hence, (4.5) and  (4.7) give

         11e(･, 
O)ll.+]gitus91elfi

 -<C  ,n(Q)r[elpf{Cm(Q):1 ¢ 1, for fi>fi2(N+2)12 ,

where  r  =(P-S)IIS.  Since the  conjugate  function of  g(r)=rp  is g*(r)=(P-1)(r/P)p', the  de-
finition of  IV},. yields

(4･8) IV}"(uo'+ip,f'+¢)SC  m(Q)rll.  d(uo'+ip) +  I, d(f'+ip)] gC  M(Q)'(11getjli+1) ･

Note  here that the constants  C  appearing  in the above  inequalities do not  depend on  y,.
Thus, (H3)-<ii) holds if T>O  is suMciently  small.  Consequently Theorem  3.1 guarantees
that (4.1) has a  solution  on  [O, T'] with  some  T' e (O, T].
    Next,  let us  consider  the case  where  (b) or  (c) holds. In this case  we  set

                         gi(x, t, r) =
 (r')P, gt(x, t, r)=rlrlg-i,

                                tiotpt' and  f=v.                                                                '

Since {Hl), (H2), (H4) and  (H5) are  clear,  we  shall  show  that (H3) holds with  ¢ =e=O  and
r=P.  For this end  we  estimate  the function h=L(uo',f"). We  knew  ([17], [10, Lemma])
that

                       h{t)=eLe"uo' +!1 e- 
`t-`)

 
`ll"(s)ds

 ,

                       "e-tdall.:E{;Ct-"`P-L"-i)f21Ia]lp for cr2P21  
,

                       !I I]e-Sdall."ds-<C]Ial]S for fi=AIZxl(N+2) .

Combining these facts with  Young's  inequality leads to

(4･9) lhl,.'E{C<lluo'lle+lf'lv) with  v=NPa'/(N+2)  
,

provided

(4.10) NPa'-N-2>O,  a'--al(a-1)

holds. Therefore, if cr and  B satisfy  (4,4), (4.6) and  {4.10), then  we  have

               I. e( ･, O)due+  I, etif"= !, h(-e,-de)dxdt= j,hedxdt
                   ==IQh4i'P'ei'PdxdtE{lhlp.tlCll"'lelltp:{;C(I]uo'Uv+]f'le)14[i
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which  implies that for r>n

(4･11) Nb,r(uo',f+) SC  m<Q)  ̀
'-""'V(

 Iluo' [1.+lf'1.) ･

   Now  we  set  cr:=(N+2)(P-1)1(AIP-N-2)  and  P=(N+2)(P-1)f((N+2)P-IV-4) if P>
(N+2)/N; and  an  arbitrary  a>1  and  P= (N+2)a/(2cr+N+2) if P=(N+2)/N. Then  (4.4),
(4.6) and  (4.10) hold for a  certainty.  Therefore it follows from  (4.8) and  (4.11) that (H3)
holds with  e==di=O and  r=P  if T>O  is suMciently  small.

   thoof of Theorem  4.2. In this case  we  set

                       g,(x, t, r)=k,(r+  V<x, t)) ,

                       g2(x, t, r)=k2(r+  V<x, t))-k2(V<x, t)) ,

                       uo=pti  and  f==vi-k,(Ti<･,.))

for a.e.  (x, t)eQ  and  reR;  where  V=L("2,v2) and

                       k-,(r)=i("i)" ll ;-<>l:
                       k'..(r)=I:tr-l".-.i+i ll ;i;ll
We  also  see  that u  is a  solutlon  of  (4.1) if andonly  if v==u+V  is a  solution  of  (3.1) with

those  gi,g2,uo and  f. Now,  (Hl), (H2), (H4) and  (H5) are  obvious.  To  see  (H3) set

                    ip=pt2', op=v2" and  r=rnin  {P,<N+1)IN}.

Then  we  have that  g,(x,t,r-w)Sr'  for r;liO, which  implies {H3)-(i). (H3)-(iii) is a  direct
consequence  of  the fact that g,(x,t,r)sgl on  QxR.  Since r<(N+2)/N;  the same  manner

as  in the proof of  Theorem 4.1 also  yields (4.8) with  g(r)=r'. Therefore there exists  a

solution  v, of  (3.1) and  hence  a  solution  u,  of  (4.1) on  [O, T'] for some  T'e(O,T].

   Next, consider  the problem  (4.1) where  pt and  v are  replaced  by fi=u,(･, T') and  D=
v(-, ･,  +T'),  respectively.  Condition (4.2) is clearly  satisfied by putting  pti=ui(･, T')eLi(9)
and  fi2=O. Therefore there exists  a  solution  u2  of  (4.1) with  u2(･,O)=ui<-,  T') on  [O, T"]
for some  T"e(e,  T-T'].  Define u:  9 × (O, T'+T"].R  by u(･,t)=u,(･,t)  for te(O, T'l and
u(･,  t) =u,(･,t-T')  for te[T', T'+T"].  It is not  hard to see  that "  is a solution  of  (4.1) on

[O, T'+T"].  We  here rernark  that T"  is deterrnined by (H3)-(ii) only,  that  is, by  the

condition  that Alb.T,,(,fi',f'+DS)<1 (Note that u,==Zi,f==ili-k2(V),  sb=:IZS=O, gb=fi2' and  g(r)==
r'). But, (4.8) giyes

                    IVb,.･･(fi',f'+Si)-<Cm(9× <O,T"))r(11fi,11,+1)

with  some  constant  C  which  depends on  only  9, T, P, q, IV, and  v.  Moreover, (1.3) gives

             Hvi(･, T')Hi E{: IIuo lli+ V+  g,(･, ･,  vi)1iS  II fi,11i+ lvili+i Vl:+2 m(Q)

where  v,=ui+V.  Thus  we  obtain  that ATb,.,,(fi',f'+il2')SCm(9× (O, T"))r for some  cons-

tant C  which  depends on  only  9, Z  P, q, # and  v.  This  implies that T"  is deterrnined
by  given  data only.  Therefore we  can  extend  "  to [O, T]. []

   Finally, reea11  the definitions of  capacities  with  respect  to the spaces  W;'i(R""i) and
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 rva･p(RN). Let E  be a  subset  of  R""i. If E  is compact,  we  set

                     C2,t.p(E)=:=inf{lvlS,i,.; veCoco(RN+i),v21  on  E}  
.

 If E  is open,  we  set

                     C2,i,p(E)==sup{c2.i,.(K);  KcE,  K  is compact}  
.

 If E  is an  arbitrary  subset,  we  set

                      c2.t,p(E)=inf{c2.t,.(G!);  EcG,G  is open}  
.

 c2,i,p is called  a  PVh2'i capacity  on  subsets  of  R"".  Similarly, we  ean  define a  VVa･p-capacity

 on  subsets  of  R"  by using  the norm  ll･il... in VV"･P(RN). We  refer  to [5], [131 and  [2] for
 the properties of  the capacities  and  the  relation  between Hausdoff measure  and  capacity.

    Using  these concepts  we  can  characterize  <4.2) as  follows:

    PRoposlTIoN 4.3. Let q>1,q'=q/(q-1),pteme(9)  and  vemb(Q).  7:hen, (4.2) helds if
and     only         ij' the fbllowing con                          dition holds:

(4.i2) .E.c.R.""g."g::,･:::J[.E,):::g1.mp,l,l.e,sI",i,IE.l'z-g･.

    P)'octf: This is essentially  proved  in [6]. For sirnplicityset  rc=il+ptX6  where  vny is the
extension  of  v  to D  by  O. We  know  ([6, Proposition 2.3]) that  (4.12) is equivalent  to

(4.13) EcD  and  c,.,.,r(E)=O  implies INi(E)==O.

Therefore, it suMcies  to  show  that  (4.13) is equivalent  to

(4.14) s=rc,+rc2,  rcteLi(D),  rc,eVVt2,-i(D).

    It is a direct consequence  of [6, Proposition 3.1] that (4.14) implies (4.13). Conversely,
we  show         that             (4.13)                   implies (4.14). We  may  assume  that rc20.  0therwise consider  the
Jofdan decomposition rc=m"-rc".  Assume  that (4.13) holds. By  [6, Proposition 3.2] there
exssts  a  sequence  {a.} in mo(D)'  such  that a.e  VV}a'-i(D), supp  a.  is compact  and  Xee=, a.  =

rc in  
'mo(D).

 Let p. be a  mollifier  on  R"'i. Observe that

                     IPm*gn-anl-ti.-i.g.<IPin*Vn-Vnlg-e'O as  m-oo  .

Here, (v.)t-de.==a. in D, v.(.,  
--T)=O

 in 2, v.=O  on  09 × (-T, T). Hence  there exist  N2e

VVI2'"i(D)
 and  a  subsequence  {m.} satisfying  E:-t (a.-p..*a.) is absolutely  convergent  to

rc: in. VVIF2'-i(D). Also since

                         oa  oo

                         Z  IPm."anlS Z  aa(D)!=x(D)<+co  
,

                        n=1  n=1

there exists  rc,eL'(P)  satisfying  E:.,p..*a. is absolutely  convergent  to N, in Lt(D). The･
refore  we         have

                                 co

                             
rc2=n4i

 (an-Pmnan)= rc-rci.  D
                                                                          '
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