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ABSTRACT. A semilinear evolution equation of the type wu,—du—g,(x, t, u)+g(x, t, u)=f on
2X%(0, T) is studied in the space L!(2), where 2 is a bounded domain in R¥, and g,(x, ¢, ) and
Zy(x, t, ) are monotone continuous with respect to r and measurable with respect to x and #. An
existence theorem for the initial value problem associated to this semilinear equation is proved.
We then apply this existence result to solve the problem u,—du—u’+u?=y and u(-, 0)=p with
measures vy and g.

Introduction.
In this paper we study semilinear evolution equations of the type

w—Adu—g,(x, t, u)+g.(x, t, u)=f in Q,

©.1) u(-,0)=u, in 2, u=0 on 62x(0,7T)

where Q=2x(0,T) and 2 is a bounded domain in R¥. Here g.(x,¢ 7»),i=1, 2, are given
functions on @ X R which are measurable in (x,?#) and continuous nondecreasing in », and
f and u, are given functions on @ and 2 respectively. We consider (0.1) in L' spaces:
Namely we shall prove the existence of continuous curve u: [0, T]>L*(£2) satisfying (0.1)
in the sense of distributions. We next apply the above existence theorem to the problem

M,—Au—cl(u+)p+02ulu|q_1=v in Q

0.2) u(-,0)=p in 2, u=0 on 32X T).

Here, u*=max {u«, 0}, p, ¢>1,c,;,c.>0, and ¢ and v are given bounded Borel measures on 2
and @, respectively. If ¢,=0 or ¢,=0, this type of problem has been considered by many
authors. Among others, Weissler [17], [18] showed the existence of local solutions of
(0.2) in the case where c¢,=0, v=0 and g€ L"(Q2) for r>N(p—1)/2, and Baras and Pierre
[5] extended some results of [17] to the case where p, v are Borel measures. On the
other hand, Baras and Pierre [6] and Brezis and Friedman [7] dealt with (0.2) in the case
of ¢;=0. In our argument their results are derived from our result for (0.1) by setting
g.(x, t, w) appropriately. Thus we offer a unified treatment of the type of problem (0.2).
Moreover, Baras and Pierre [5] obtained only an “integral” solution which is in some
sense the weakest definition of solotions. Our results, however, provide us with more
“strict” solutions.

To solve (0.1) we shall employ the standard successive approximation method. In this
procedure the estimate of the approximations in an appropriate scale plays an essential
role. To obtain that we use a new a priori estimate on integral solutions of (0.1) with
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g.=0. This type of a priori estimate was first proved by Baras and Cohen [4] for integral
solutions to homogeneous equations of the type

u,—Adu—g,(w)=0 in Q.

u(-,0=u, in 2, u=0 on o2x0,7].

To obtain the a priori estimates on the approximations it is necessary for us to extend
their results to the inhomogeneous case.

The outline of this paper is as follows: In Section 1 we present the notations used
in this paper and some known results about linear heat equations. In Section 2 we deal
with a priori estimates on the integral solutions which are crucial in our arguments. In
Section 3 we give the existence theorem of solutions of (0.1) which is our main result.
Finally, Section 4 is applications of the existence theorem to the type of problem (0.2).

1. Preliminaries.

Throughout this paper 2 will denote a bounded open set in R¥(IN>1) with smooth
boundary 2. Let T>0 and @=2x(0,7T). For 1<p<occ W2(Q) is the Banach space
consisting of the elements # of L?(Q) such that their generalized derivatives owu/ox;,
0*u/ox.x; and ou/ot (written u;, u,; and u,, respectively, in brief) belong to L*?(Q) for 7,j=
1,2, ..+, N, with the norm

N N
lot]g,1,p= 6| p+|24:] , + 1§1 ]ui|p+i ,Z=1 EZ79
where
i/p
|u|p=(s |u(x, B)]? dxdt) :
Q

For 1<p<oo and s>0, W*»(2) denotes the usual Sobolev space with the norm ||-[,,, (see
[1, Section 7]). We denote the norm of » in L?(2) by |[«]|,, i.e.

fat=({ meopax)”.

Let I'ng"(Q) denote the closure of C{(Q) in the space W2 Q) and Wi ?(2) denote the
closure of C¢(2) in the space W*?(2). For convenience of notation we set

X=L0,T; Lx(Q2)NL O, T; Wi (2)
and

X,=C([0, T}; L}@)NLO, T; Wi () .

my(2) and m,(Q) will denote the space of bounded signed Radon measures on 2 and @,
respectively. These spaces are equipped with the weak* topology, i.e., lim,_ .¢,=p¢ in
m,(2) if and only if

limmg ¢d#n=S pdp
Q2 2
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for all ¢€Cy(2) (the space of bounded continuous functions on 2). Finally, Y+ will
denote the nonnegative cone of a vector lattice Y.

For reference we collect some well-known results about linear heat equations in the
fellowing lemma (For the proofs see e.g. [6, Lemma 3.3] and [7]):

LEMMA 1.1. For p€my,(2) and v € m,(Q) therg exists a unique solution u of the problem

(1.1) ue X, u—du=y in 2'(Q)
' ess lim,_ . u(-,8)=p in my(Q) .

Moreover, if

L: my(2) Xm,(Q)—>L(Q)

is given by u=L(y,v) where u is the solution of (1.1), then we have:

(@) L is an order preserving mapping.

(b) For s, g1 with (2/s)+(N/q)>N+1 there exists a constant C=C(s,q, N)>0 such
that

”u”L”(o.T;Ll(m)"*'”u”Ls(o,T;wé"?(m)SC(I#[(Q)'i‘|V|(Q)) .
(©) If 1<r<(N+2)/N then L is a compact operator from L' (2)x L Q) into L"(Q).
(d) If v=f+v, with fe LY(Q)" and v, € m,(Q), then we have

utr, )=\ | Gt—s, 90, 9dyds+ L v 1

for a.e. (x,t), where G(t, x,y) denotes the Green function of the heat equation with Dirichlet
boundary condition.

The next lemma may be already known, but it seems to me that there is no literature
proving it explicitly, so we give the proof of it for completeness.

LEMMA 1.2. Let g,: @XR—>R be a function satisfying the following conditions: (i)
For each r€ R, g,(x,t,7) is measurable on Q; (ii) For a.e. (x,1) in Q, g.(x, t, r) is continuous
and nondecreasing in r and ¢.(x,t,0)=0; and (iii) sup <,|9:(x,t, s)| € LYQ) for each r>0.
Then for u,€ LY(2) and f€ LY (Q) the problem

ueXO’ gZ(’:':u)eLl(Q)’
1.2) u,—du=—g.(x,t,u)+f in 2(Q)
u(-,0)=u, in 2

has a unique solution u. Moreover, if we define
S: LY(Q) X LY (Q)—LY Q)

by u=S(u,, f) where u is the solution of (1.2), and if 4=SG, f) with f,€ L (Q) and
e Ly (@), then we have

(1.3) lee— )" || 22 0, 7: 22 c@y> T 1(Ge(+y = ) —Ga(-, -, ﬁ))+[1£||(uo—ﬁo)+”1+!(f_f)+l1

where r*=max {r,0}. In particular, S is an order preserving mapping.
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Proof. We shall follow the idea of [9]. For each integer z set g..(x, ¢, r)=max {—,
min{g.(x, ¢, ), n}}. By the Schauder fixed point theorem (see e.g. [16]) there exists u,¢€ X,
satisfying

(1 4) (un)t—Aun+gzn(x» t, un):f in @'(Q) ’
) U (-, 0)=u, .
For M >0 and r€ R set

1 if r>M,
Pu(r)={ 0 if—M<r<M,
—1 if r<—-M.

It is well-known that
S (a/at—A)u'Pu(u)dxdtz—S lu(x, 0)|dx
Q Ry
for all ue X,N W#(Q), where 2,={xc 2; |u(x,0)]>M}. Using this inequality we find that

S Igzu(x,t,un)ldxdtég |fldxdt+§ ()|
lupl>M

lupl>M lugl>M

In particular, [g,.(:, -, #,)], is bounded in » and hence it follows from Lemma 1.1 (c) that
{u.} is precompact in L(Q) for 1<r<(N-+2)/N. After extracting a subsequence we may
assume that

u,—u in LYQ), u,—u a.e.,
Gonls, +, ) —Gs(+, -, u) a.e..

On the other hand

]VImeas[lu,.l>M]£S |u,| dxdt

lupl>M

Sc(lgzn(': ) un)ll+]f|l+“u0“1)

and hence sup, meas [|u,| > M]<Const./M—0 as M—co,
Given ¢>0 we can therefore choose an M so that

S | f] dxdt+§ |2y |dx <e/2 for all n>1.
lupg!|>M

lugl>M

Since ky(x, )=sup,<x |9:(x, ¢, M)| belongs to LY(Q) by our hypotheses, we can also choose
a 0=0d(s)>0 such that

g hy(x, )dxdt<e/2 whenever AcC® and meas A<J.
A
Consequently, for such an A we obtain

S |gen(, £, u,.)]dxdtgg Rz, t)dxdt—l—S |Gsn(x, ¢, u,) |dxdt<e
A A

funl>
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By the Vitali convergence theorem, g..(-, -, #,)—g.(-, +, #) in LY(Q). Therefore, passing to
the limit in (1.4) yields that «# is the desired solution. The uniqueness will follow from
[6, Lemma 3.4].

Finally, to show (1.3) we set w=u—1. Recalling
SQ (w,— dw)-sgn*w dxdtzgg w(-, T)ldx —Sg (-, 0)ldx
where sgntr=1 for »>0 and sgn*r=0 for <0, we can get
feote, =t 0= — || tig.x 100008, 0y +7 — ) 1axat

for all 0<¢< T, which gives (1.3). O

2. A priori estimates on solutions

In this section we will give an a priori estimate on “solutions” of a semilinear para-
bolic equation with nonmonotone nonlinearity. For this purpose let g: @ X R*—>R*(R*=
[0, 0)) be a function satisfying the following conditions:

(g1) For each e R* g(x,t r) is measurable on @, and for a.e. (x,¢) in @ g(x, t,7) is
continuous and nondecreasing in » and g(x, ¢, 0)=0.

(g2) For each e R* there exists p,€ L¥*(Q) such that g(x, ¢ 7)<p,(x,?) for a.e. (x,?)
in Q.

(g3) For a.e. (x,1) in Q g(x,t,r) is convex in 7.

(g4) There exist constants y>1 and >0 such that g(x,¢, ar)>2"g(x, ¢t,») for all i>1
r>a and a.e. (x, )€ Q.

We here note that if y>1 then g(»)=(r*)" is a typical function satisfying (gl) (g4).

Now, for g€ my(2)*,vem,(Q)* and 1>1 consider the following problem

(Pa; 1) {(uﬂz—duz—g(x, tu)=a in Q,
v ux(x,0=2¢ in 2, =0 on 2x(O,T).

Following Baras and Cohen [4] we say that u; is an integral solution of (P;; s, v) if u;:
Q—[0, +0] is a measurable function satisfying

iz, = S SD Glt—s, %, 9)9(3, s, us(y, $)dyds+ Vix, 1

* for a.e. (x,%) in @, where V;=L(ip, Av) and L is the operator defined in Lemma 1.1. We
say that U, is a least integral solution of (P;; g,v) if U, itself is an integral solution of
(P;; p,v) and whenever «; is any integral solution of (P;; g,v) we have U;<u; a.e. on Q.
We here remark that U, may equal infinity identically, so we set

T*(y, v)=sup{t>0; U, is finite for a.e. on 2x(0, 8} .

LEMMA 2.1. Let g, §: QX R*—>R* satisfy (g1). Then we have:
(@) There exists a least integral solution of (P;; p,v).
(b) If g<§ a.e. on QXR* and U,, U, are the corresponding least integral solutions of

(Py; p,v), then U1<0} a.e. on Q.

— 87 —
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. Proof. Let v, be an arbitrary integral solution of (P;; y,v) and {«#"} be the sequence
defined by
ure X, (), —dur=g,(x, t,u2" )+ in Z/@Q),
ess lim,.;o%%(-,0)=2¢ in m,(2),

and #%=0 on @, where g,=min{g,»}. By Lemma 1.1 this sequence {#7} exists and
satisfies '

Wix, )= S g Glt—s, %, 9)g.(, s, ul-)dyds+ Vi(x, 8 .
0JQ

By recurrence we see that #7~'<u?<uv, and u?<U, a.e. on Q. Set U,=lim,..«»? on Q. It
follows from the monotone convergence theorem that

Uiz, )= St Sa G(t—s, x, 9)9(y, s, Updyds+Vi(x, t) .
0

Hence U, is an integral solution of (P;; 4, v) satisfying U;<v; and U,<U,. O
Now, we give a priori estimates on the least integral solutions of (P;; g v) with 1=1
which is crucial in our arguments.

LEMMA 2.2. Let (g1)-(g4) be satisfied and let pe m,(2)* and vem,(Q)*. Assume that
T*=T%(u,v) >0 for some 2,>1. Then we have

2.1) U(x, ) <27/ =17 "=2(V (%, ) +a) Jor a.e. (x,)€2x0,T*).

Proof. We shall modify the arguments of [4]. Let {¢}cCy(2)* and {v,}CC5(@)* be
sequences such that

Y g’ in mb(!?), Vv in mb(Q)’
sup; [lgll,<+o0 and sup; [y, <+4oco.

For je N and A1€[1, 2], let #%7 (written #%? for simplicity if there is no need for distinc-
tion or possibility of confusion) be the sequence given by

ure Wii(@Q% , Q*=0x[0,T¥,
2.2) Uy, —duy=g(x, t, w; ) +i; in @Q*,
u*(-,0)=2¢;, in 2, u*=0 on d2X[0,T*,

and #$=0 on @*. We show that this sequence exists. Indeed, since g(x, ¢ #$)=0 and
v, € L¥+1(Q*), there exists #} satisfying (2.2) with =1 (cf. [11, Theorem 9.1]). By the
embedding theorem (cf. [11, Lemma 3.3]) «} € W%,(Q%) < C(Q* and hence g(x, ¢, u}) <p,(%, ?)
by (g2) where r=supy|u}(x,?)|. Thus g(x,¢ u}) belongs to L¥+(Q*), and so by [11,
Theorem 9.1] again there exists #3% satisfying (2.2) with »=2. Inductively, we can obtain
the sequence {n3}} satisfying (2.2) for all z.

By recurrence and (g1), (g3) we have

O0<ui<ur**<U, on @%*,

@.3) up<uy on Q*.
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For simplicity write that »,=2]-!/(2]J-*—1). Fix m€ N for the moment. For 7>7, set
Ep={(x,t) € Q%; ul(x,)>n(V (x, H+a)}

where V,=L(y,,v,), which belongs to C*1(Q*) N C(2x[0, T*]).
Suppose now that there exists an 7,>7, such that E;'jn +9. For ne(ln, y.] and n>m
define

. uy (%, 1)
"= inf A=
g (W) (z,8) B ui'(x, t)

and
w(x, =ul(x, ) —gr (@) ur(x, ) +7(grm) —gnm)V (x, ) +a) .

We deduce from (2.3) that
(2.4) 1<2,<gn(m<  inf U, (x, O/ul(x, )< +oo

(z,t) €EY
and from (g4) that
g(x, t,ul ) >g(x, t, gr(ul) >gn(n)’g(x, t,uf) on EI.
Hence

w,—dw=g(x, t, u3))+2v,—9n7(g(x, ¢, w7 ") +v,) +9(gr () —gn(n))y,
2{—g7 () +9(gn() —9n()}y; on Er.

However, by observing that 1,—s"+7(s"—s)>0 whenever s>21, we obtain
w,—4dw>0 on ET.
On the other hand we have

w>gr . (U —gr ) ur+7(grm) —gmm)(V ,+a)
>(9n()" —gnN—up+7(V,+a)} on Ep.

Since —ui”-%—v(V,.—}—a)zO on the parabolic boundary 0,@*=(32 X (0, T *)) U (2 x{0}), it follows
from the above inequality and the definition of E7 that

w>0 on §,Er=0Er/(2x{T*}).

Moreover, w belongs to W%1,(Q@*), and hence by the Jmaximum principle (cf. [15], [12]),
we have w>0 on EP for ne[7,, 7.l
For 7,<»<%»’<», we have

V,+a<@)"'up on Em
and by the fact that w>0 on E,
i > gn) ul — @) g —gn () on En,
which gives

— 89 —
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i@ gm0 — ' N gR () — g7 () -

The sequence {g7(y)}7-; is nondecreasing and bounded by (2.3) and (2.4). Its limit gm(y)=
lim,-..g7"(y) satisfies

g ) =>g™(n)"—@/7") (g™ () —g™ () .
Hence

@ldngr@)/(@’—gmm)=1/n a.e. 7€ [9y, 7al .

Integrating on [7,, 7] yields

B . B
log(vm/vo)ss (S’—S)"dsgs (s"—s)"'ds

29
where a=g™(7,) and =g,(7.), from which we obtain
N <Noo/ AT 1 —1)V T=0 =27 [(AT-1—1)7/ T~ |

This means that Er=¢ whenever 7>2/(1]"*—1)"/7"? (written 1, for simplicity). Con-
sequently, we have

(2.5) upi<9(V,+a) on Q* for all >, and m,jeN.
Now set
g:(x, t,r)=min {g(x, t,7), k} , keN.

For k,je N and i>1 let v%'9-* be the sequence given by (2.2) with g, instead of g. By
recurrence we see that
0<ppiktlyni on Q%

2.6 ,
) v’it,j,kSv}t+1,J’,k_<_v7zz+1,f,k+1 on Q*.

Hence the limit v{*(x, t)=lim,.-.. v77-*(x, {) exists monotonously for (x,#) in @* and we
have from Lemma 1.1 (b) that

S';llp SQ* oIk dxdt <C{|g.(x, t, vT LRy by ”#j”l}gc{k m(Q*)+ ]VJI1+”#1"1} .

Here m(Q*) denotes the Lebesgue measure of @*. If follows from Beppo-Levi’s theorem
that v77-*>p{.* and g.(-, -, vP" 199 —>g,(-, -, v{-*) in LY(Q*) as m—oo, Passing to the limit
.in (2.2) with g, instead of g, we see that the limit »{-* satisfies

vi*e WHL(Q*NLYO, T*;, Wi (2),
2.7) W), —dvi*=gx, t,v{*)+v;, in 27(Q%),

v{*(-,0)=p, in 2.
Since {g.(+, -, v{*¥)}5=: and {v,}7: are bounded in L}@Q*) and {g¢}7-: is bounded in L'(9), it

follows from Lemma 1.1 (c) that {»{-*}7=,; and {V )3 are precompact in L1(Q*), so we may
assume that there exists »¥e L1(Q*) such that

vi-*—>p*¥ and I“/"j-—-)T/'1 in LY(@Q*) and a.e. on Q%

— 90 —
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as j—ooo, where V,=L(g,v). Letting j—ooo in (2.7) and then using Lemma 1.1 (d) yield

t

Pz, t)=§ S Glt—s, %, Ngu(y, 5, (3, s)dyds+Vi(x, )
Q

0

for a.e. (x,?) in @*. However, v!<vi"1<U,<+o0 on @* by (2.3) and (2.6) and hence by
the monotone convergence theorem the limit »,=lim,_. v} satisfies

0, =| gg Glt—s, x, 99(3, s, v:( 3, $)dyds+Vi(x, )

for a.e. (x,?) in Q*. By definition, v, is an integral solution of (P,; p,v) satisfying v,<U,.
Since U, was the least integral solution of (P,; g, v), we must have v,=U,. Consequently,
it follows from (2.5) and (2.6) that U,=v,<1,(V,+a) a.e. on Q*. O

Next we give a sufficient condition which ensures that T§(z,»)>0 for some 2>1. To
this end we further assume that the following condition holds:

(gb) There exists a constant 5>0 such that g(x,¢ b)Y 7P € L1,.(@), where 7 is the
constant appearing in Condition (g4).

Let g* be the conjugate function of g, i.e.

9%(x, t, r)=sup {ar —g(x, t, a)}
a>0
for a.e. (x,¢) in @ and »>0. Following [5] we set
Z={#e L~(Q)*; supp ¢ is compact and g*(x, ¢, 6/¢)é € L (Q)}
where
(2.8) &x,)=Ex, T—1t) for (x,HeQ and E=L(0,6).

For pem,(2)* and ve m,(Q)* we define

S &, o>dp+g edv
Q Q

Ny, (¢, ”):%‘ég
S g, 1, 0)8)edxdt
Q

LEMMA 2.3. Let (g1)-(g5) be satisfied. Let pemy,(2)*, vem,( @), T>0 and 1>1. If
Ny r(Ap, 20)<1, then (Py; p,v) has an integral solution such that T¥(p,v)>T.

Proof. Let V;=L(QAp, Av) as before. We can easily see that
S Vﬁdxdtzng&(-,O)dy +z§ 5dv.<_s 0*(x, 8, 0/0)edxdt
Q Q Q

for all e Z. Here we used the assumption that N, .(ig, )<1. By virtue of [5, Theorem
2.1] (P;; mv) has an integral solution #; such that u;0 € L'(Q) for all fe Z={0e Z: g*(-, -,
afl§)é e L\(Q) for some a>1}. To show that T¥(yv)>T, let K be a compact subset of 2
and T,€(0, T). Set &,(x,)={(T,—*} 'n,(x)*" where 7’=7/(r—1) and 5, € C5(2)* satisfying
7=1 on K. Then, we want to show that #=(—(¢,),—4¢,)* belongs to Z. Indeed, define
¢ by (2.8) where 6 is the function above. The maximum principle (cf. [8]) implies that
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£>¢, on @ and easy culculations imply that ¢<C{(T,—8)*}Y -2, and so #7&7<C.
Here and in what follows C denotes various constants, which need not be the same
throughout. On the other hand, (g2)-(g4) deduce that

g¥(x, t, r)<Clr+g(x,t, b))~V Ty},

which gives that for all a>1
S o¥(x, £, aﬂ/e)édxdtscg {04g(x, £, b)Y T-P07 &) dxdt < oo
Q Q

by (g5). Thus we obtain 6e2. Therefore, u,0c L1(Q) implies that u;e LYK% (0, T))).
Since KcR and T,€(0,T) can be taken arbitrarily, it follows that ;€ L}..(®), and so
T 2>T. U

3. Semilinear equations in L:.
In this section we will be concerned with the following problem

ueX,, g, wel(Q), i=1, 2,
(3°1) ut—Au—gl(x’ t; u)+gz(x: t’ u):f in @’(Q) ’
u(-,0)=u, in 2,

where g,: QXR—R,f: Q>R and u,: 2—R are given functions and # is unknown. We
will solve (3.1) in L! spaces under the following conditions:

(H1) For re R and i=1, 2, g.(x,t r) is measurable on Q.

(H2) For a.e. (x,¢) in Q and i=1, 2, g.(x,¢,7) is continuous and nondecreasing with
respect to 7, g,(x, ¢, 0)=0 and g,(x,¢,7)>0 for all e R.

(H3) There exist y>1,6em,(2)* and ¢ €m,(Q)* which satisfy the following condi-
tions:

(i) 9:.(x, t, r—w(x, ) <gr)=r"

for >0 and a.e. (x, %) € @, where w=L(¢,¢) (L is the operator defined in Lemma 1.1).

(ii) Ny, r(us+¢,f*+9)=p<l.

(iii) | SQ 9.(%, t, Ph(x, D)dxdt<+oo ,
where h=L(ui+¢,f*+¢) and p=1—p"~) 770,

(H4) sup lg:(x, ¢, 7)| € LY(Q) for s>0.

(H5) u, € L(2) and feLY(Q).

Our result of this section is the following.
THEOREM 3.1. Let (H1)-(H5) be satisfied. Then, (3.1) has a solution.

Remarks. (a) As will be seen in the proof of the theorem, we can replace g(»)=7"
in Condition (H3) with the function g(x, ¢ 7) defined on @ X R* satisfying Conditions (g1)-
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(g5) in the previous section. In this case, however, (H3)-(iii) must be replaced by
(i)’ S 0.(x, 8, 5(h(x, 1)+ @))dxdt< +oo ,
Q

where @ is the constant appearing in (g4). (b) The requirement for g.(x,¢ 7) not to be
continuous in (#,#) but to be measurable in (x,¢#) is essential in applications to equations
involving measures (see the next section).

We will prove the theorem under the general conditions stated in the remarks above.
We begin with the following

LeEmMmaA 3.2. Let (H1)-(H5) be satisfied. Then the problem

(3 2) zt—Az_gl(xr t; z):f+ zn Q ’
’ 2+, 0)=us in 2, z=0 on aNx0,T).

has the least integral solution z. Moreover, we have
2x, )<plh(x,t)+a) for a.e. on Q.
Proof. Set 2,=1/p>1. Since
Ny, r(Ao(u5 +@), 2(f *+)=2p=1,

it follows from Lemma 2.3 that T},(ui+¢,f +¢)>T>0. Hence, by Lemmas 2.1 and 2.2
there exists a least integral solution V of (P,; ui-+¢,f*+¢) such that

Vix, ) <o(h(x, t)+a) a.e. on Q.

Set §,(x,¢t, r)=g.(x, t, r—w(x,t)) where w=L(¢,¢). (H1), (H2) and (H3)-(i) imply that §,<g
and §, satisfies (g1). By Lemma 2.1 there exists a least integral solution U of (P,; ui+
é,f*+¢) with g replaced by ¢, such that U<V.

On the other hand, it is easy to see that z=U—w is the least integral solution of
(P,; ug,f*) with g replaced by g,. Consequently we have

2<U<V<p(h+a) ae.on@Q. O
Proof of Theorem 3.1. Let {u#"} be the sequence given by

u"eX‘)? g2(': ')un)eLl(Q)r
(3.3) (™), —dur=g,(x, t,u"")—g,(x, t,u™)+f in Z7(Q).
u™(+, 0)=u, in 2,

and #°=—w on Q. Let {v"} be the sequence given by (3.3)* which means (3.3) with ", f
and «° replaced by »*, f* and u{ respectively, and v°=—w on Q. First, we shall show
that there exist sequences {#"} and {v"} satisfying (3.3) and (3.3)*, respectively, and the
following property holds:

(3.4) <<z a.e. on @,

where z is the least integral solution of (3.2). Since g,(x, t, —w(x, ))=0 by (H2) and (H3)-
(i), #* and o' exist by Lemma 1.2. Moreover, if S is the operator defined in Lemma 1.2,
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then #'=S(u,, f)<S(ui, f*)=0v' and 0=S5(0, 0)<v'=L(ui, —gs(-, -, V) +f )< L(ui, fH)<z. In-
ductively, assume that (3.3), (3.3)* and (3.4) hold up to —1. Note that 0<g,(x, ¢ «" 1)<
g.(x, t, o )<g.(x, ¢, 2)<g,(x,¢t, p(h+a)) by Lemma 3.2. Hence, Lemma 1.2 together with
(H3)-(iii) assures that #" and »* exist. Since the operator S has the ordre preserving pro-
perty, u"=3S(u,, g.(-, -, #* ) +f)<S(us, g.(-, -, v"")+f*)=v™ and v">0. Moreover, it follows
from Lemma 1.1 (d) that

™%, £)= St

0

Sa G(t—s, x, 9)9:(y, s, v*")dyds+ L(ug, — (-, «, v™)+f) (%, £)

sgt SD G(t—s, x,9)9:( ¥, s, 2)dyds—+ L(us, f *)(x, )=2(x, t) .

0

Thus, (3.4) holds true. Consequently, we see that there exist sequences {#¥*} and {v"}
satisfying (3.3), (3.3)* and (3.4).

Now, using the order preserving property of S again, we find that {#"} is a nonde-
creasing sequence. Use (1.3) with #=4#«" and fi=f=1,=0 to obtain

(3.5) lg:(x, 8, u™) | <ol +19.(x, 2, u» ) +f | Zlaoll s+ | f ll-I-SQ 9.(x, t, p(h+a))dxdt .

Let #=lim,_.»". Since g,(x, t, «”) converges monotonously to g.(x, ¢ %) for a.e. (x,¢) in @,
Beppo-Levi’s lemma together with (3.5) yields that g.(-,-,%") converges to g.(-, -, %) in
LY(Q) as n—>co. On the other hand, since g.(-,-,#"<g,(-, -, p(h+a)) € LYQ), Lebesgue’s
convergence theorem vyields that g.(-, -, #")—g,(, -, #) and u">u in LY(Q) as n—oco. The-
refore, passing to the limit in (8.3) yields (3.1). O

4. Equations involving measures.

In this section we apply Theorem 3.1 to the problem

ue XNLYQ), utel?Q),
4.1) u,—du—u*)*+ulu|r =y in 2/(Q) .

ess lim,.. (-, t)=p in m,(Q),
where pemy(R2),vem,(Q) and p,g>1. In the case whepe the term u|u|¢! disappears in
(4.1) this problem has been treated by many authors (e.g. [4], [5], [10], [14[, [17], [18]).

In the case where the term (#*)? disappears in (4.1) it was considered in [6], [7], etc..
To mention the results about (4.1) let D=2 Xx(—7T, T) and recall that W;2.-1(D) de-

notes the dual space of ﬁ’q%'l(D), where ¢>1 and ¢’=¢q/(g—1).

THEOREM 4.1. Let p>q>1, pemy(2) and v e my(Q). Suppose that one of the following
conditions is satisfied:
(@) P<(N+2)/N and

u=mtps, v=vitv,
(4.2) meL(2), viel Q)
P+ @0 € Wi (D)

where ¥, is the measure on D such that P,(E)=v,(ENQ) for all measurable subset E of D,
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and 6 is the Dirac measure at the origin on (—T,T).

(b) P>(N+2)/N, pe L'(2),ve L(Q) and r>p(N—-1)/2.

() p=(N+2)/N,peL(2),veL(Q) and r>1.
Then, (4.1) has a local solution on [0, T’] with some T’€ (0, T].

THEOREM 4.2. Let q=>p>1. Let pemy(2) and vem,(Q) satisfy (4.2). Then, (4.1) has
a global solution on [0, T].

Remark. Condition (4.2) can be characterized by terms of capacities (see Proposition
4.3 below). Thus Theorems 4.1 and 4.2 extend some results of [5], [6], [7], [17], [18], and
offer a unified treatment for problems of the type (4.1).

Proof of Theorem 4.1. We first assume that (a) holds. Let V=L(g,v;). (4.2) implies
that Ve LYQ). Indeed,

(4.3) V], <ClPy+ @8] <5, 1,4

where |-|_. _,,, denotes the norm of W;*~Y(D). We set

gl(x’ t) r):kl(r+ V(x’ t)) ’
g2(x’ t’ 7):k2(r+ V(x’ t))"kz(V(x, t)) ’
o=, and f=v,—ky(V(-,"))

for a.e. (x,¢) in @ and » in R; where k,(r)=(r*)? and k,(r)=r|r|*"!. Then, « is a solution
of (4.1) if and only if v=u+V is a solution of (3.1) with those g,, g., #, and f. Therefore
we must check Conditions (H1)-(H5) in the previous section. However, (H1) and (H2) are
obvious. (H4) and (H5) follow from (4.3). To show (H3) we set

o=ps and ¢=vi.
Set w=L(¢,¢) and h=L(us+¢, f *+¢). Noting that V<w<h, we have
g.(x, t,r—w)<g,(x, b, r—V )=r? for r>0,

and
9.(x, t, ah) <C(h*+(V *)?) <Ch? for a>0.

Since k€ L?(Q) whenever p<(N+2)/N (see Lemma 1.1 (c)), (H3)-(i) and (iii) hold wjth r=p.
To see (H3)-(ii) let e L~(@)* and # have a compact support in @ and let &(x, t)=&(x, T—1)
for (x,t)e Q where £=L(0,46). If

(4.4) 2—(ft—a HY(N+2)=>0
holds, then by the embedding theorem (cf. [11]) we have

(4-5) lslaéclflz,l,ﬂécmlﬁ .
Put {=67"&1-?', If, furthermore,
(4.6) By, B D/ —P<aLo

holds, then by Holder’s inequality we have
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lﬂlpé{s Cdxdt}l/p'{x Eﬁ(p'—n/(p'—p)dxdt}(pr_ﬂ),p:ﬂ
) SCICIi/P'IGL;v'—l)/P'SCICH/p'lalpgp'—l)/z,r
and hence
@D 61P<CIZl,

Take a=oco. Since p<(N+2)/N, it is possible to choose such a B satisfying (4.4) and
(4.6). Hence, (4.5) and (4.7) give

flsc., 0)I|m+l§lmSCI¢9|§SC m(Q)7101,<Cm(@Q)|gl,  for p>B>(N+2)2,

where t=(8—f)/88. Since the conjugate function of g(r)=7? is g*(r)=(p—1)(r/p)*’, the de-
finition of N, , yields

(4.8) Nor(s +¢,f*+N<Cm@Q){\ dui+¢) 4\ d(f++¢)f <CmQ) (||, +1) .
Q2 Q

Note here that the constants C appearing in the above inequalities do not depend on p,.
Thus, (H3)-(ii) holds if T>0 is sufficiently small. Consequently Theorem 3.1 guarantees
that (4.1) has a solution on [0, T'’/] with some 7€ (0, T].

Next, let us consider the case where (b) or (c) holds. In this case we set

9%, 8, )=, gux, 8, r)=r|rjt,
=g and f=vu.

Since (H1), (H2), (H4) and (H5) are clear, we shall show that (H3) holds with ¢=¢=0 and
7=p. For this end we estimate the function A=L(xi,f*). We know ([17], [10, Lemma]))
that

t
h(t)=e"4ug +S e~ “if*(s)ds ,
0
le~t4all. <Ct-¥ ¢« jg)ly  for a>p>1,

|\ lealizas<Claly  for p=Nayi+2).

Combining these facts with Young’s inequality leads to

(4.9) |Blow <C(llugll+1f*1s)  with y=Npa’/(N+2),
provided
(4.10) Npa’—N—-2>0, o' =al(a—1)

holds. Therefore, if @ and B satisfy (4.4), (4.6) and (4.10), then we have
S 5(-,0)dua‘+g &d +=S h(—E:—As)dxdt=S hédxdt
Q Q Q Q

= SQ hC/2 84 2dxdt < |hlpor [C1V7 |61 < Clluit 1y + 1 £ *19)IC 4
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which implies that for r>7
(4.11) Ny, r(ug, f SCm(@) /(g |+ f 1) .

Now we set a=(N+2)(p—1)/(Np—N—-2) and B=(N-+2)(p—1)/(N+2)p—N—4) if p>
(N+2)/N; and an arbitrary a>1 and S=(N+2)a/2a+N+2) if p=(N+2)/N. Then (4.4),
(4.6) and (4.10) hold for a certainty. Therefore it follows from (4.8) and (4.11) that (H3)
holds with ¢=¢=0 and y=p if T >0 is sufficiently small.

Proof of Theorem 4.2. In this case we set

0.(x, t, )=k, (r +V(x, 1),
g2(xy ts r)=152(r+ V(x’ t))—E2(V(xs t)) ?
uy=p, and f=v,—Lk,(V(-,*))

for a.e. (x,1)€ @ and r€ R; where V=L(y,v,) and

_ _ (r+)p if r<1 ’
kl(r)—{ 1 if »>1,
- _ rlrIQ‘l if rSl ’

We also see that # is a solution of (4.1) if and only if v=«+V is a solution of (3.1) with
those g¢,, 9., #, and f. Now, (H1), (H2), (H4) and (H5) are obvious. To see (H3) set

¢=p3, ¢=»§ and y=min {p, (N+1)/N}.

Then we have that g,(x, ¢, r—w)<7” for >0, which implies (H3)-(i). (H3)-(iii) is a direct
consequence of the fact that g,(x,¢,7)<1 on @ XxR. Since y<(N-+2)/N, the same manner
as in the proof of Theorem 4.1 also yields (4.8) with g(»)=#". Therefore there exists a
solution », of (3.1) and hence a solution %, of (4.1) on [0, T’] for some 7’€(0, T].

Next, consider the problem (4.1) where ¢ and v are replaced by g=u,(-, T’) and o=
v(+, «, +T), respectively. Condition (4.2) is clearly satisfied by putting a,=u,(-, 77) € LY(R)
and 4,=0. Therefore there exists a solution %, of (4.1) with u,(-,0)=u,(-, T’) on [0, T']
for some T’ €(0, T—7T”’]. Define u: 2Xx(, T/+T"]-R by u(-,)=u,(-,t) for t€(0, T/] and
u(-, )=u,(-,t—T7) for te[T’, T’+T"]. It is not hard to see that # is a solution of (4.1) on
[0, 774T7"]. We here remark that 7/ is determined by (H3)-(ii) only, that is, by the
condition that N, ,//(a*, f*+55)<1 (Note that wo=p, f=0,—ko(V), =43 =0,¢=5; and g(r)=
»"). But, (4.8) gives

Nq,T”(ﬁ+,f++ﬁ§)£c m(Q X(O, T"))r(”ﬁ1”1+1)
with some constant C which depends on only 2, T, p, g, N, and v. Moreover, (1.3) gives

o, THL<Zllwoll,+1f+9.(, -, v <Al + il 1 V]E+H2 m(Q)

where v,=u,+ V. Thus we obtain that N, . /(a*, f*+93)<C m(2 % (0, T77)) for some cons-
tant C which depends on only 2, 7 p, q, ¢ and v. This implies that 77/ is determined
by given data only. Therefore we can extend # to [0, T]. O

Finally, recall the definitions of capacities with respect to the spaces W3 '(R¥*!) and
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We.?(R¥). Let E be a subset of R¥*!, If E is compact, we set
C2,1,o(E)=inf{[v|},,,,; ve CP(R¥*1),v>1 on E}.
If E is open, we set
C2,1.5(E)=sup{c;,,,,(K); KCE, K is compact} .
If E is an arbitrary subset, we set
Cs,1,5(E)=inf{c,,;,,(G); ECG,G is open} .

C:,1.p is called a W 2! capacity on subsets of R¥+1, Similarly, we can define a W<=.?.capacity

on subsets of R¥ by using the norm ||-||,,, in W=?(R"). We refer to [5], [13] and [2] for

the properties of the capacities and the relation between Hausdoff measure and capacity.
Using these concepts we can characterize (4.2) as follows:

PROPOSITION 4.3. Let g>1,q'=q/(q—1), n€ my(2) and vEm,(Q). Then, (4.2) holds if
and only if the following condition holds:

ECR"*' and c,,,,(E)=0 implies [v[(E)=0,

(4.12) FCR® and ¢y, (E)=0 implies |¢|(F)=0.

Proof. This is essentially proved in [6]. For simplicity set x=5+®3J where ¥ is the
extension of v to D by 0. We know ([6, Proposition 2.3])) that (4.12) is equivalent to

(4.13) EcD and c,,,,(E)=0 implies [¢|/(E)=0.
Therefore, it sufficies to show that (4.13) is equivalent to
(4.14) E=g,+5,, £, €LND), k,€ WY (D).

It is a direct consequence of [6, Proposition 3.1] that (4.14) implies (4.13). Conversely,
we show that (4.13) implies (4.14). We may assume that £>0. Otherwise consider the
Jordan decomposition #=x*—x~. Assume that (4.13) holds. By [6, Proposition 3.2] there
exists a sequence {s,} in m,(D)* such that ¢, € Wz -Y(D), supp o, is compact and X%°_, o,=
£ in my(D). Let p, be a mollifier on R¥*!. Observe that

|Om*n—0n| 5,1, <|Pm*Vn—0,], >0 as m—co .

Here, (v.),—4v,=0, in D, v,(-, —=T)=0 in 2,v,=0 on 92x(—T, T). Hence there exist &, ¢
W;*~%(D) and a subsequence {m,} satisfying Y %_, (0n—pPm,*a,) is absolutely convergent to
x, in Wg*=4(D). Also since

21 IPm,,*a,,hS ,’gldn(D):x(D)< +OO R

there exists &, € L!(D) satisfying Y%., Pm,*0, is absolutely convergent to x, in LY(D). The-
refore we have

k2="§1 (On—OmpOn) =K=—kK,; . | |
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