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On Some Special Finsler Spaces

Mamoru YOSHIDA*

Finsler spaces have been studied by many mathematicians and phisicists, especially in Japan.
In the present paper, we shall consider some special Finsler spaces such as R3-like ones, of scalar
curvature, of perpendicular scalar curvature, of Rp-scalar curvature, of Hp-scalar curvature, with
F,';x=0, *P-Finsler spaces, Landsberg spaces etc. and investigate relationships among them.

§1. Preliminaries

Let F, be an #xn-dimensional Finsler space with a fundamental function F(x?, y)V.
Here, we assume that F(x,y) satisfies the following conditions: 1) F(x,y) is a positively
homogeneous function with respect to y?, that is, F(x,2y)=iF(x,y) for 1>0; 2) F(x,y) is
positive for y:=£0; 3) the fundamental tensor g.;:=(1/2)0*F?/9y‘dy’> is positive definite, that
is, g,,X*X’>0 for any variables X?0 (in detail, see the paper [7]* appeared in this jour-
nal, or [9], [14] etc.).

A hypersurface of F, defined by the equation

F(x,y»=1,
where the point x=(x?) is fixed and y® are variables, is called the indicatrix. We denote
by p- the projection on the indicatrix, for example, for a tensor Ti, of type (1,2), we can
see
pTi=hiTs k= ;k_F_l(liTgk_{_le3k+lij'O)-*_F-g(lilegk_[_lilkT?O_*_ljlkT(,;O)
—F 3L, T, ,

where hi:=d:—1l,, 1;:=0F/ay’, I':=g"l,=F~'y, o} is the Kronecker delta, g¥ are the re-
ciprocal components of g,;, in the matrix (g;;) and the index O means the contraction by

y, e.g., Ti,=Tiy* T%=T:y: vi:=yg:;. The tensor h;:=g.,h? is called the angular
metric tensor. A tensor T satisfying p-T=T is called an indicatric tensor. hi or h;; is

indicatric.
We use two kinds of covariant derivatives due to Cartan, that is, for a tensor 77 of
type (1,1)
a) T;/k:dkT}-*_*F;sz}—*F}kT;l ’
1.1)
b) T ao:=Tiw+ChTt— 3% A
where

* ghaedEiE g 1983 4 10 B 31 AEf
1) Latin indices run over 1,2,...,n. We may use F(x, y) or merely F instead of F(x%,y?).
2) A:=B or B=:A means that A is defined by B. Also, we apply the Einstein’s summation con-

vention.
3) Numbers in square brackets refer to the references at the end of this paper.
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di:=0/0x*—Gid/oy' , Gi:=0aG*|oy* , Gi:é—T}kyfy", 0 :=0/3y* ,

T;k::'é_gih(aghj/axk+ghk/axj—agjk/axh) ’ *Fz Z—%gih(dkghj'l"djghk_dhgjk) ’

) ) 1
C%E:gﬂcnjk ’ Ch.jk::‘—

5 8gn,10y* .

Then, the curvature and torsion tensors are defined as follows:

a) R)yu=(@X G, +¥ ¥l h—ilR+CinH , Riy™30mi= R »
b) P —Cz;k/n+an mie—RIT ,

€) Sup=—CrCnu—Jlk, Spmpgd™=:Su's,

d) Hh':jk::deij-[—G’:jG;k—j[k:HJik(h) v Hy" 5 Gmi= Hyis

e) Hi:=d,Gi—jlk=R,,=H;, H;=:H;,

f) Pii=Cin, PRIni=:Pjic,

(1.2)

where Gi,:=0dG:/dy* and —j|k means the interchange of indices j, # in the foregoing terms
and subtraction. S, Pnije and R,.; are called the first, second and third curvature tensors
of Cartan, respectively. On the other hand, H,,; is called the Berwald curvature tensor.

It is known (e.g., [17], (1.5)) that the third curvature tensor of Cartan and the Ber-
wald curvature tensor are related by the following relation:

1 .
1.3) Rh,ijk:?(Hhijk—hlz)—'thjk ’
where thjk::Ph”;Pm'tk_jlk'
Also, we know that the Berwald curvature tensor satisfies the following identities:

a) Hhijk ;km (thcmzk+szthJ+Phtj/k ][k) Hikcmh@_{_Hhichk
—Pinsit P
(1.4) b) Hyioo=Hui— HCoii+ H"C i — H Coini— Prinso’
¢) H,u=Hu=—H;
d) Hhook':_ hok

§2. An R3-like Finsler space

M. Matsumoto [8] showed that in a three-dimensional Finsler space the third curvature
tensor of Cartan is always expressed by

2.1) Riin=09uLixt+gul,;,—jlk,

where L,,=(R;,—1/2)rg;)/(n—2), R, =R,™n, r:=g"R.,/(n—1). So, we shall give the fol-
* lowing

Definition 2.1. If the curvature tensor'Rh,-,,‘ in a Finsler space F,(#>3) has the form
(2.1), then the space is called an R3-like Finsler space.
Let us construct a tensor C,.; formally from the curvature tensor R,;, by the same

— 86 —

NI | -El ectronic Library Service



Shonan Institute of Technol ogy

On Some Special Finsler Spaces (Mamoru Yoshida)

expression as that of the conformal curvature tensor in a Riemannian space, that is,
Criji: =Ruiji—(gni R+ 9uRi;—791n,90—7 1R (n—2) .
In this case, H. Izumi and T.N. Srivastava ([3], Theorem 3.3) showed
Theorem 2.1. An R3-like Finsler space is characterized by C,;;;=0.

Now, we shall decompose the tensor L, in an R3-like Finsler space by the idea of
indicatrization (for this idea, see [6], [3]) as follows:

where m,.=p-L,,;=m,, (cf. [3], B.9)D)), a;:=F'p-L,,b,.=F 'p-L,,c:=F2L,. According-
ly, taking account of (1.2)e), we get

a) Hi,=F[l(mi+chi)+bhil—jlk,
b) Hi=F*mi+ch}) ,

(2.3)

where mi:=g"m,. Then, the following identities are known [3]:
a) p‘Rhij/k+P%Pmik+FbkChfj+hij(_mnk+bhk+0hhk)“jlk:o ’
b) ZPI:'Lijik~2€hhjhik+hhj(mik_bik)+hik(mhj_bhj) “‘][k:O y

(2.4)
where b;.: =Fp-b,,,=b;; (cf. [3], Lemma 5.4). These identities will be used later.

§3. A Finsler space of scalar curvature

Definition 3.1. Let X=(X? be a vector of a Finsler space F,.(#>2) at a point x=(x?%).
The quantity K(x,y,X) at (x,y) given by

RhijkyhXi.y‘ij
(ghjgik—ghkgii)yhXiijk
is called the (sectional) curvature at (x,y) with respect to X. Then, if K(x,y, X) is inde-
pendent of X at any (x, y), then the space is said to be of scalar curvature K. Especially,
if K is constant, then the space is said to be of constant curvature.

In the above R,.; can be replaced by H,,., because R,,,=H,,, holds good.
The following important facts are known:

Kx,y,X)=

Theorem 3.1 ([14], [11], [16]). A Finsler space of scalar curvature K is characterized
by any one of the following equations:

a) Hi=FKh;,

31 b H;‘-k:F( Klj—{—%Kj)h};— jlk
| 1 2 1 o 1
0 Hhtj,‘z[ . (Klj+§—K,-> + ( K+ Ko, ) +5Ky ] Rt I ( KI, +§K,,)hh,
+%hzl,»Kk—j|k ,
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Whefe Kj:-_—FK(j), Khj::Fp"Kj(h):th‘

Theorem 3.2 (e.g., [14], p. 123). If the curvature K in a Finsler space of scalar cur-
vature is independent of y, then K is constant.

§4. A Finsler space of perpendicular scalar curvature

Analogously to a Finsler space of scalar curvature, we shall give the following

Definition 4.1 ([4], [5]). Let X=(X? and Y=(Y% be two independent vectors of a
Finsler space F,(#>3) at a point x=(x?). The quantity R(x,y,p-X,p-Y) at (x,¥) given by

Ruis(p- XM)(p- Y (- X)(p-Y*)
4.1 R(x,y,p-X,p-Y)= 4
@1 (+,3, D p-¥) (9ri95x— Fn:g:;,(P- X*)(p- Y)(p- X7)(p- Y*)

is called a perpendicular sectional curvature at (x,y) with respect to X and Y. In addi-
tion, if R(x,y,p-X,p-Y) is independent of X and Y at any (x,y), then the space is said
to be of perpendicular scalar curvature (abbreviated of p-scalar curvature).

A characterization of a Finsler space of p-scalar curvature and the curvature tensor
R,.;. of this space are given respectively by the following theorems [5]:

Theorem 4.1. A Finsler space of p-scalar curvature is characterized by
4.2) P hajk—thjhik+ (Zhjcmtk+szthj) —Jjlk,
where Zv;:=p-HT,;

Theorem 4.2. The curvature tensor R,.; of a Finsler space of p-scalar curvature has
the form

4.3) Ry ip=F'(LginH}— g H A LigumH i — 19 i H 7
—F—Z(lhljgimH +l'lkganj —]Ik)_F_I(Cmnmelk+CmikH;Lnlj_jlk)

[ thj 'Lk+ (Zhjcmtk+szthj) ]lk]

A Finsler space of p-scalar curvature and a Finsler space of scalar curvature are in-
dependent of each other. So, we shall give the following

Definition 4.2. If a Finsler space of scalar curvature is at the same time of p-scalar
curvature, then the space is called a Finsler space of s-ps curvature.

It is proved that the curvature tensor R, of a Finsler space of s-ps curvature has
the form similar to (2.1) of that in an R3-like Finsler space, namely we have

Theorem 4.3. The curvature tensor R, of a Finsler space of s-ps curvature has the
form

(4.4) Rnuk:hthik""‘hianj"‘jlk ’
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where M,,:= 5 ha,,—l— (Kl +1.K)+ Kl ..

Proof. Substituting (3.1)a), b) into (4.3), we can calculate as follows:

Rhijk:[< thlj+—]3l_ lth)hik_( Klll]—}_%l‘lKJ)hhk_jlk}

[( Kil+L = LK, )h,ﬂ.—( szlh+~13— LK, )h,.,.—hlz]
—K(lhljhik+lilkhhj—jlk)—FK(C;?jhmilk—}"c mhl —Jjlk)
+[ Ryt F{(Khh;-"—hlj>cm,,+(thz‘—i1k>cmh,~}~j|k]

1

- %(lthhik—}— LK ) +< Kl + 5 LK, ) hm.—|-< szzi+_:13- LK, )h,,,--i—th,h,-k

- "61_(th1'11¢ —chhik+ Kicknj"KkCihj) _]Ik

- h[% (lth+l,-Kh)+Kl,,z,+% th,}hh,-[%mxﬁszi)+Klilk+%Rh,-k —jlk

:hthik+hithj—j|k . Q.E.D.
Theorem 4.4 (cf. [3]). A Finsler space of s-ps curvature is an R3-like Finsler space.

Proof. Making use of %,,=g,,—1.l;,, we shall rewrite (4.4). Then, we have

Rhijk:(gnj—lnlj)Mik+(gik—lilk)th"‘]lk
:gthik+githj_lhleik_lilthj_jlk

=gn; M+ guMy;— ‘%‘R(lhljhik’*‘ lilkhhj)—%(lhljliKk+lilklth) —jlk

=ganik+ githj_iR(lhljgik—}_lilkghj) —jlk

_gh]sz+gzk hj ]lk

where

Lik:Mik—%Rl,—lk = %—(KJ,,—!—LK,,H(K———;—R )zizk . Q.E.D.

Theorem 4.5 (cf. [3], Theorem 3.6). An R3-like Finsler space of scalar curvature is
a Finsler space of p-scalar curvature, and consequently of s-ps curvature.

Proof. Since the space is an KR3-like Finsler space of scalar curvature, comparing
(3.1)a) with (2.3)b), we have

my=mh ,

where m:=m?t/(n—1)=K—c. Thus, from (2.1) we obtain
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(4.5) P Ryip=2mh,;h,.—jlk .
This means that the space is a Finsler space of p-scalar curvature with R=2m and satis-

fying Z’r':jcmik'{‘zz"ﬁcmhj“jlk:o- Q.E.D.

§5. A Finsler space of Rp-scalar curvature

It may be significant to consider a Finsler space satisfying the form (4.5).

Definition 5.1 [5]. A Finsler space F,(n>2) satisfying the condition
(5.1) p'Rhijk:q(hhjhik_hhkhij)

is called a Finsler space of Rp-scalar curvature and q is called the Rp-scalar curvature.
Evidently, we have

Theorem 5.1. A Finsler space F,(n>3) of Rp-scalar curvature is of p-scalar curva-
ture.

The following theorem is very essential and important:
Theorem 5.2. A Finsler space of s-ps curvature is of Rp-scalar curvature.

Proof. Since the space in consideration is a Finsler space of scalar curvature, from
(3.1)b), we have

Z;‘-kz—;’—Fth}; —jlk,

which leads us to Z2,C, .+ Z7%C,.;—jlk=0. Hence, in virtue of Theorem 4.1, we get the
theorem. Q.E.D.
Moreover, we know the following two theorems.

Theorem 5.3 ([3], Proposition 3.1). An R3-like Finsler space is of Rp-scalar curvature,
if my, is proportional to h;,.

Theorem 5.4 ([3], Theorem 3.2). An R3-like Finsler space of Rp-scalar curvature is
of scalar curvature, and consequently of s-ps curvature.

Combining the above two theorems, we can state

Theorem 5.5. An R3-like Fi’nsler space is s-ps curvature, if m,, is proportional to h,,.

§6. A Finsler space of Hp-scalar curvature

In the previous section we considered a Finsler space with the third curvature tensor
of Cartan of a special form. In this section we consider a Finsler space with the Berwald
curvature tensor of a special form.
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Definition 6.1. A Finsler space F,(n>2) satisfying the condition
6.1) p'Hmjk:k(hhjhik_hnkhij)

is called a Finsler space of Hp-scalar curvature and k is called the Hp-scalar curvature.
Making use of (1.4), we can obtain the Berwald curvature tensor of a Finsler space
of Hp-scalar curvature as follows:

(62) Hhijk:F‘l(thijk_hli)—F_z(lhleiok+lilth.oj—jlk)
+Fﬁl[lj(Hkhi_HI:ncmki+Himcmkh—Hkmthi—Phik/o) —jlk]+k(hhjhik—j[k) .

Now, we assume that a Finsler space of Hp-scalar curvature is at the same time of
scalar curvature. Then, from (3.1)c), we get

(63) p'Hhijk:( Khnj"";_l;'Knj)hik"jlk .

In addition, it is known ([17], (3.6)) that in a Finsler space of scalar curvature the fol-
lowing identity holds good:

FKC,.,+ F‘lPhij,«o+—%—(Khhij+hli| =0,

where +h4i|j means the cyclic permutations of indices %,7,j in the foregoing term and
summation. Thus, using the above identity, (3.1)a), b) and (6.2), we have

Theorem 6.1. The Berwald curvature temsor of a Finsler space of Hp-scalar curvature
and at the same time of scalar curvature has the form

(64) Hhijk:kthik+hithj'—%_(Khhij+h|ilj)lk—jlk ’

where N;,=1/2)kh,+1/3)(I.K,+ 1K)+ Kl],.
Taking account of (6.4) and (1.3), we have

Corollary. The third curvature tensor of Cartan of a Finsler space of Hp-scalar cur-
vature and at the same time of scalar curvature has the form

(6-5) Rhijk:(hthik+hithj—jIk)—thjk .

Next, we consider an R3-like Finsler space of Hp-scalar curvature. Operating the
projection p- to (2.1), we get, with (2.2) in mind,

(6.6) p-Ruij=hnmy~+hom,;—jlk .
On the other hand, from (6.1) and (1.3), we have
(6.7) D Ruiju=k(hnhi—j1k) —Qniji -
Therefore, from the above two equations, we get
o +hom,,—jlk=k(Ryhi—71R) — Qi -
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Transvecting this equation with A*/, we can see

where Q,,:=@.,™... Hence, by means of Theorem 5.3, we can state

Theorem 6.2. An R3-like Finsler space of Hp-scalar curvature is of Rp-scalar curva-
ture, if Q.. is proportional to h.

§7. A Finsler space with Fi'j=0

H. Izumi [2] introduced an interesting tensor F,?;, and T. Sakaguchi [15] investigated
a Finsler space F,(#>2) with F,%;,=0. This space is characterized by

(7-1) Hhijk:thag+ghjLik’_hiij_jlk ’
where
thzl:(n_l)th—‘% g”Hrsghj‘f‘(Hmh—Hhm)lmlj ]/(n—l)(n—Z) ’
Li:=g"™L,,, th::Hhmjm .
In this space, T. Sakaguchi [15] proved the following

Theorem 7.1. If a Finsler space with F,';,=0 is at the same time of scalar curvature,
then the space is a Finsler space of constant curvature.

When a Finsler space of scalar curvature is replaced by a Finsler space of p-scalar
curvature in the above theorem, we have

Theorem 7.2. If a Finsler space with F,';;=0 is at the same time of p-scalar curva-
ture, then the space is of Rp-scalar curvature.

Proof. From (7.1), it is easy to see that
ij:Hoijk:Lojali_‘_ijik—j]k ’
which implies Zi,=(p-L,)hki—jlk, hence Z72,C,.+ZnC..;—jlk=0. Consequently, using

Theorem 4.1, we have the theorem. Q.E.D.
Now, let us consider the decomposition of the tensor L, in (7.1), that is,

L=m+al+bili+clil, .

Substituting this decomposition into (7.1), we obtain

(7.2) Hyipn=[1{l(m o+ cha) +bhu}+ b+ houand,— Blil+ Byl (a—b) —jk
from which, we can see
(7.3 pHyi o= (hymy—hli)—jlk .
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By the way, we know

Theorem 7.3 ([15], Theorem 4.4). A Finsler space with F,';,=0 is a Finsler space of
constant curvature, if m, is proportional to h;,.

Here, suppose that a Finsler space with F,?,,=0 is of Hp-scalar curvature. From
(6.1) and (7.3), we have

Therefore, by means of Theorem 7.3, we have

Theorem 7.4. If a Finsler space with F,';;=0 is of Hp-scalar curvature, then the
space is a Finsler space of constant curvature.

§8. Other special Finsler spaces
Definition 8.1 [1]. A Finsler space satisfying the condition
8.1) *Pi.=Pi,—2C,.=0

is called a *P-Finsler space.
For this space, H. Izumi [1] studied in detail.

Definition 8.2. A Finsler space satisfying the condition
(8.2) Pi=0

is called a Landsberg space.
For this space, S. Numata ([13], Theorem 1) proved the beautiful theorem, that is,

Theorem 8.1. A Landsberg space F,n>2) of scalar curvature K+0 i3 a Riemannian
space of constant curvature.

On the other hand, M. Matsumoto [10] showed that the first curvature tensor of
Cartan in a four-dimensional Finsler space is written in the form

(8.3) Shijk:hhjUik+hikUhj—j|k s
where U,,=S;;—1/4)Sh;i, Six: =S "m =S4, S:=S,,9"*. So, we shall give the following

Definition 8.3 (cf. [12]). A Finsler space F,(n>4) satisfying the form (8.3) is called
an S4-like Finsler space.

When a *P-Finsler space is at the same time an R3-like one, substituting (8.1) into
(2.4)b), we have

8.4) 228 ipn=hniAut-hiAni—jlk ,

Where Aik:mik"‘bik_‘chik.
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In the case 1#0, which means that the space in consideration is not a Landsberg
space, it follows from (8.4) that we obtain the follwoing

Theorem 8.2. An R3-like (non-Landsberg) *P-Finsler space is S4-like.
Next, we assume that 1=0, which means that the space in consideration is an R3-
like Landsberg space. In this case, from (8.4), we get A,.,=0,. that is,

(8.5) My —b,=chy, .
Substituting (8.5) and (8.2) into (2.4)a), we obtain
(8.6) 0:Cri;—j1k=0 .
Transvection of (8.6) with A* yields

| ' b,C.=b,C, ,

where C,:=Cy,. Consequently, there exists a scalar function g such that b,=pC,. Sub-
stituting this relation into (8.6), we have

pC.Chiy—Jlk=0.

Therefore, we must consider two cases. The one is

(8.7) CiCrij—Jlk=0.

In this case, transvecting (8.7) with A**, we get

(8.8) cC,.;=CcC,,

where C™:=g™C,. Also, transvection of (8.7) with C* gives, with (8.8) in mind,
CC,..;=C.CC;,

where C*:=CmC,,. The above equation implies S,;,,=0.
The other case is p=0. In this case, we have b,=0, hence b,;,=0. Thus, from (8.5),
we have m,=mh,;,. Consequently, taking account of Theorems 5.5 and 8.1, we can state

Theorem 8.3. An R3-like Landsberg space is a Finsler space satisfying S..;;=0, or a
Riemannian space of constant curvature.
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